首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Topology management schemes have emerged as promising approaches for prolonging the lifetime of the wireless sensor networks (WSNs). The connected dominating set (CDS) concept has also emerged as the most popular method for energy-efficient topology control in WSNs. A sparse CDS-based network topology is highly susceptible to partitioning, while a dense CDS leads to excessive energy consumption due to overlapped sensing areas. Therefore, finding an optimal-size CDS with which a good trade-off between the network lifetime and network coverage can be made is a crucial problem in CDS-based topology control. In this paper, a degree-constrained minimum-weight version of the CDS problem, seeking for the load-balanced network topology with the maximum energy, is presented to model the energy-efficient topology control problem in WSNs. A learning automata-based heuristic is proposed for finding a near optimal solution to the proxy equivalent degree-constrained minimum-weight CDS problem in WSN. A strong theorem in presented to show the convergence of the proposed algorithm. Superiority of the proposed topology control algorithm over the prominent existing methods is shown through the simulation experiments in terms of the number of active nodes (network topology size), control message overhead, residual energy level, and network lifetime.  相似文献   

2.
Energy efficiency and reliability are the two important requirements for mission-critical wireless sensor networks. In the context of sensor topology control for routing and dissemination, Connected Dominating Set (CDS) based techniques proposed in prior literature provide the most promising efficiency and reliability. In a CDS-based topology control technique, a backbone - comprising a set of highly connected nodes - is formed which allows communication between any arbitrary pair of nodes in the network. In this paper, we show that formation of a polygon in the network provides a reliable and energy-efficient topology. Based on this observation, we propose Poly, a novel topology construction protocol based on the idea of polygons. We compare the performance of Poly with three prominent CDS-based topology construction protocols namely CDS-Rule K, Energy-efficient CDS (EECDS) and A3. Our simulation results demonstrate that Poly performs consistently better in terms of message overhead and other selected metrics. We also model the reliability of Poly and compare it with other CDS-based techniques to show that it achieves better connectivity under highly dynamic network topologies.  相似文献   

3.
The lower layer of ubiquitous and pervasive systems consists of wireless ad hoc and sensor networks. In wireless sensor networks (WSNs), sensors consume most of their energy in data transmission and idle listening. Hence, efficient usage of energy can be ensured by improved protocols for topology control (i.e., coverage and connectivity), sleep scheduling, communication, and aggregation and compression of data. Though several protocols have been proposed for this purpose, they are not energy-efficient. We propose an integrated and energy-efficient protocol for Coverage, Connectivity, and Communication (C3) in WSNs. The C3 protocol uses received signal strength indicator to divide the network into virtual rings, defines clusters with clusterheads more probably at alternating rings, defines dings that are rings inside a cluster and uses triangular tessellation to identify redundant nodes, and communicates data to sink through clusterheads and gateways. The proposed protocol strives for near-optimal deployment, load balancing, and energy-efficient communication. Simulation results show that the C3 protocol ensures partial coverage of more than 90 % of the total deployment area, ensures one connected network, and facilitates energy-efficient communication while expending only one-fourth of the energy compared to other related protocols such as the coverage and connectivity protocol, and the layered diffusion-based coverage control.  相似文献   

4.
Connected Dominating Sets (CDSs) can serve as virtual backbones for wireless networks. A smaller virtual backbone incurs less maintenance overhead. Unfortunately, computing a minimum size CDS is NP-hard, and thus most researchers in this area concentrate on how to construct smaller CDSs. However, people neglected other important metrics of network, such as diameter and average hop distances between two communication parties. In this paper, we investigate the problem of constructing quality CDS in terms of size, diameter, and Average Backbone Path Length (ABPL). We present two centralized algorithms having constant performance ratios for its size and diameter of the constructed CDS. Especially, the size of CDS computed by the second algorithm is no more than 6.906 times of its optimal solution. Furthermore, we give its distributed version, which not only can be implemented in real situation easily but also considers energy to extend network lifetime. In our simulation, we show that in average the distributed algorithm not only generates a CDS with smaller diameter and ABPL than related work but also suppresses its size well. We also show that it is more energy efficient than others in prolonging network lifetime.  相似文献   

5.
In recent years, mobile devices are becoming popular and high-speed wireless communication is uproaring. In a wireless network environment, a mobile ad hoc network (MANET) has the characteristics of being infrastructure-free and self-organizing. Although the topology of MANET can be deployed easily with few restrictions, the maintenance faces great challenges. Furthermore, all nodes transmit packets by multi-hop in MANET. If transmission is by traditional broadcasting, it has a broadcasting storm problem and it can significantly reduce the wireless network throughput. The CDS (Connected Dominating Set) scheme is a well-known solution to the broadcasting storm problem. In a MANET, a virtual backbone network can be constructed by using CDS. All nodes can transmit data effectively through the virtual backbone network. In previous research on the subject, most algorithms are only suitable for a static MANET environment, with all nodes being stationary. This is contrary to the desirable characteristics of MANET. In this paper, we present an algorithm which is suitable for both static and dynamic MANET environments.  相似文献   

6.
Topology control is a fundamental issue in wireless ad hoc and sensor networks. Due to intrinsic characteristic of flatness, hierarchical topology can achieve the scalability and efficiency of a wireless network. To solve this problem, one can construct a virtual backbone network by using a connected dominating (CDS) set of a wireless network. In past few years, efficiently and fast construct a CDS in a wireless network as a virtual backbone has been the main research problem in hierarchical topology control. In this paper, we give a comprehensive survey for CDSs and related problems with various network models and specific applications. To conclude, some open problems and interesting issues in this field are proposed.  相似文献   

7.
无线传感网络中能量均衡的连通支配集算法   总被引:1,自引:0,他引:1  
连通支配集是无线传感器网络中构建虚拟骨干网络的重要手段.由于支配集中节点的能耗相对其他节点要多,支配集中剩余能量较小的节点决定了虚拟骨干网的生命周期.现有算法或者只是关注构造较小的支配集,或者没有考虑调整能耗极快的支配节点.提出了一种能量均衡的连通支配集算法,基于节点剩余能量和连通度构造支配集,在网络运行过程中根据耗能速度,提前选择候选支配节点,分流负载过重的支配节点.仿真结果表明,新算法能以较小消息开销,有效延长网络寿命.  相似文献   

8.
基于连通支配集(Connected dominating set,CDS)的区域覆盖算法大都采用休眠节点数量的最大化机制来实现节能,这将给无线传感器网络中的活动节点带来沉重的负担。活动节点电能的迅速耗尽将导致CDS失效,产生覆盖盲区。不断激活其他休眠节点,会出现频繁的网络拓扑变化,导致网络收敛性出现问题。提出了一种基于学习自动机的WSN区域覆盖算法。采用受度限制的连通支配集d-CDS来构造WSN骨干网络,利用学习自动机选择当前节点的最优邻居节点,以此实现对所构造CDS的优化,实现活动节点的负载均衡,改善区域覆盖性能。通过仿真实验对比Gossip、ST-MSN和TMPO等算法,表明本文提出的算法在网络覆盖比率、活动节点的剩余电量等方面均存在优势。  相似文献   

9.
仇昌琪  肖明波 《传感技术学报》2012,25(12):1737-1742
拓扑控制是无线传感器网络中一种有利于节约能量、延长网络生命周期的策略。作为一种著名的基于CDS树的拓扑控制机制,A3算法的目标是在保证网络连通和通信覆盖的前提下,通过关闭一些非必要节点来获得一个次优连通支配集(CDS)。针对A3算法在构建连通支配集时通信开销较大的问题,提出了一种基于叶节点反向生成CDS树的改进型算法A3G。该算法利用反向拓扑方法来寻找连通支配集,减少了节点间的信息交换。仿真结果显示,相对于A3算法和一些其他著名的拓扑控制算法,A3G算法在活动节点数和能效方面具有明显的优越性。  相似文献   

10.
在无线自组网中,提出了一种虚拟骨干网连通控制集(connected dominating set)。然而,寻找最小连通控制集(minimum connected dominating set)是一个NP困难的问题。在很多文献中已经提出了计算最小连通控制集的近似算法,这些算法大都存在近似比很差、时间复杂度和消息复杂度高等问题。近年来,提出了一些新的构造连通控制集的分布式启发式算法。这些新的启发式算法基于生成树的构造,这使得在迁移和拓扑更改的情况下维护连通控制集的通信开销非常昂贵,会对整个网络的性能及生存时间产生影响。因此消息最优的连通控制集也就被提出。在保证构建消息最优的连通控制集的情况下,通过建立一种新的求解极大独立集的模型,考虑到圆不能密铺会造成一定的误差,通过使用正六边形来代替R为0.5的圆,从而求得了一个更为精确的三跳内极大独立集,改善了文献[16]中的结果,得到了更小的连通控集近似比,其值为143opt+33。  相似文献   

11.
在无线传感器网络的拓扑控制(TC)中,基于Cell的TC算法被认为是一类可以节省传感器节点能量并延长网络生命周期的方法,但是其需要较多的骨干网节点并且无法保证连通性.通过分析现今算法的内在局限性,提出了一种1-Con思想:当一个Cell的头节点被加入当前骨干网时,所有其可以连接的Cell使用该节点连入拓扑结构,然后此新骨干网递归地继续扩大.基于此思想,设计了一种基于可连Cell的拓扑控制算(CCTC),并从理论上证明:1)CCTC可以保证其所形成的拓扑结构维持网络连通;2)每一轮用于形成骨干网的工作节点非常少.CCTC的计算复杂度是线性的,空间复杂度和信息交换量都是常数量级.仿真实验同样显示,CCTC可以在提供良好鲁棒性和较少的消息交换的情况下,更有效地节省节点能耗并延长网络生命周期.  相似文献   

12.
无线传感器网络的拓扑控制是一个十分重要的技术问题。干扰对传感器网络应用产生了重要的影响,较大的传输干扰将导致信号的碰撞,增大网络延时间。但是,目前的大多数文献没有把干扰作为传感器网络拓扑控制的设计目标和考虑因素之一。本文研究考虑干扰的拓扑控制机制问题,根据传感器网络通信特点,设计了最优的集中式算法和适合合实际应用的次优分布式算法解决该问题。模拟实验结果表明,提出的算法与传统算法相比能有效减少网络干扰、节省能量消耗和减少网络延时,因此是一种新的高效的拓扑控制机制。  相似文献   

13.
Topology control is an effective method to improve the energy efficiency of wireless sensor networks (WSNs). Traditional approaches are based on the assumption that a pair of nodes is either "connected” or "disconnected.” These approaches are called connectivity-based topology control. In real environments, however, there are many intermittently connected wireless links called lossy links. Taking a succeeded lossy link as an advantage, we are able to construct more energy-efficient topologies. Toward this end, we propose a novel opportunity-based topology control. We show that opportunity-based topology control is a problem of NP-hard. To address this problem in a practical way, we design a fully distributed algorithm called CONREAP based on reliability theory. We prove that CONREAP has a guaranteed performance. The worst running time is O(vert Evert ), where E is the link set of the original topology, and the space requirement for individual nodes is O(d), where d is the node degree. To evaluate the performance of CONREAP, we design and implement a prototype system consisting of 50 Berkeley Mica2 motes. We also conducted comprehensive simulations. Experimental results show that compared with the connectivity-based topology control algorithms, CONREAP can improve the energy efficiency of a network up to six times.  相似文献   

14.
《Computer Communications》2007,30(14-15):2880-2891
Hierarchical routing techniques have long been known to increase network scalability by constructing a virtual backbone. Even though MANETs have no physical backbone, a virtual backbone can be constructed by finding a connected dominating set (CDS) in the network graph. Many centralized as well as distributed algorithms have been designed to find a CDS in a graph (network). Theoretically, any centralized algorithm can be implemented in a distributed fashion, with the tradeoff of higher protocol overhead. Because centralized approaches do not scale well and because distributed approaches are more practical especially in MANETs, we propose a fast distributed connected dominating set (FDDS) construction in MANETs. FDDS has message and time complexity of O(n) and O(Δ2), where n is the number of nodes in the network and Δ is the maximum node degree. According to our knowledge, FDDS achieves the best message and time complexity combinations among the previously suggested approaches. Moreover, FDDS constructs a reliable virtual backbone that takes into account (1) node’s limited energy, (2) node’s mobility, and (3) node’s traffic pattern. Our simulation study shows that FDDS achieves a very low network stretch. Also, when the network size is large, FDDS constructs a backbone with size smaller than other well known schemes found in the literature.  相似文献   

15.
韩萍  禹继国  王光辉 《微机发展》2012,(1):129-132,146
能量对于移动adhoc网络(MANET)来说是十分重要的,而通信网络的能量效率不仅依赖于它的控制协议,还依赖于它潜在的网络拓扑。借助中继区和改进的类XTC的方法提出了一个在变速率MANET中构建连通控制集(CDS)的能量有效的分布式拓扑管理算法(DETM—CDS),它构建并维持了网络的一个连通的虚拟骨干拓扑,其中主机节点在一个给定区域内以随机速度向随机方向移动。理论分析证明了算法的正确性,同时给出了相应的仿真。仿真结果表明,与先前的算法相比该算法确实能量有效。  相似文献   

16.
基于拓扑特性的分布式虚拟骨干网算法   总被引:1,自引:0,他引:1  
解文斌  李佳  鲜明  陈永光 《软件学报》2010,21(6):1416-1425
由于在任意连通网络中搜索最小连通支配集(minimum connected domination set,简称MCDS)是NP完全问题,提出了一种拓扑感知的MCDS启发式算法——TACDS(topology-aware connected domination set),并证明了其正确性.通过利用节点的拓扑特性,减小了支配节点选择的盲目性.该算法能够根据2跳内的局部拓扑信息构造出较小的CDS(connected domination set),从而得到基于该支配集的虚拟骨干网.仿真结果表明,该算法优于其他分布式CDS算法,可以更好地近似MCDS.  相似文献   

17.
针对“富连接”数据中心网络在低负载时能源利用率较低的问题,提出一种节能的多层虚拟拓扑流量调度算法(EMV-SDN)。建立节能流量调度问题的整形线性规划(Integral Linear Programing,ILP)优化数学模型,使得在承载所有网络负载的前提下,网络能源消耗最小。提出节能的多层虚拟拓扑流量调度算法来求解数学优化模型,得到数据流的节能调度方案。通过休眠高层的虚拟拓扑和交换机端口实现节能,降低网络能源消耗。实验结果表明,在网络能耗和数据流平均完成时间等方面,EMV-SDN算法均优于ECMP(Equal-Cost Multi-Path Routing)以及Dijkstra最短路径算法。  相似文献   

18.
在无线传感器网络中,一般通过构造连通支配集形成虚拟骨干网来分层路由。现有算法通常只考虑如何获得规模较小的支配集,忽略网络自身的不稳定性,使得节点失效或链路失败经常发生。针对连通支配集的容错能力,结合节点度与能量因素,提出一种能量均衡的最小2-连通2-支配集的分布式算法(DA-EBM)。 Omnet仿真实验表明, DA-EBM算法构造的容错连通支配集能有效均衡能量消耗,延长网络生命周期。  相似文献   

19.
Energy-Efficient Wake-Up Scheduling for Data Collection and Aggregation   总被引:2,自引:0,他引:2  
A sensor in wireless sensor networks (WSNs) periodically produces data as it monitors its vicinity. The basic operation in such a network is the systematic gathering (with or without in-network aggregation) and transmitting of sensed data to a base station for further processing. A key challenging question in WSNs is to schedule nodes' activities to reduce energy consumption. In this paper, we focus on designing energy-efficient protocols for low-data-rate WSNs, where sensors consume different energy in different radio states (transmitting, receiving, listening, sleeping, and being idle) and also consume energy for state transition. We use TDMA as the MAC layer protocol and schedule the sensor nodes with consecutive time slots at different radio states while reducing the number of state transitions. We prove that the energy consumption by our scheduling for homogeneous network is at most twice of the optimum and the timespan of our scheduling is at most a constant times of the optimum. The energy consumption by our scheduling for heterogeneous network is at most Theta (log {frac{R_{rm max}}{R_{rm min}}}) times of the optimum. We also propose effective algorithms to construct data gathering tree such that the energy consumption and the network throughput is within a constant factor of the optimum. Extensive simulation studies show that our algorithms do considerably reduce energy consumption.  相似文献   

20.
无线传感器/执行器网络中能量有效的实时分簇路由协议   总被引:4,自引:0,他引:4  
无线传感器/执行器网络(WSANs)主要应用于自动控制领域,实时性问题是其面临的首要挑战.根据实际环境中的节点部署情况,建立了系统模型;研究了分簇策略与功率控制技术对于自组织网络实时性的影响,提出了一种可适用于WSANs的能量有效的实时分簇路由协议--RECRP协议.该协议采用二级成簇策略使网络中的各类节点稳定分簇.分簇后的各类节点具有不同发射功率,利用执行器节点的强大通信能力有效降低网络延时.采用能量有效性算法使网络中的传感器节点轮换担任簇首,从而使网络能量均匀消耗,延长网络的生存时间.实验结果证明,在WSANs中RECRP协议可使网络稳定分簇,并且在网络的实时性与能量有效性方面与现有典型路由协议相比具有更优越的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号