首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Plants have developed mechanisms to resist secondary infection upon inoculation with a necrotizing pathogen, chemical treatment as well as treatment with some non-pathogenic microorganisms such as rhizosphere bacteria. This phenomenon has been variously described as induced systemic resistance (ISR) or systemic acquired resistance. In the present study, the chemical benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester (BTH, acibenzolar-S-methyl), and the rhizobacteriaPseudomonas aeruginosa KMPCH andP. fluorescens WCS417 were tested for their ability to induce resistance toColletotrichum lindemuthianum in susceptible and moderately resistant bean plants (Phaseolus vulgaris L.). BTH induced local and systemic resistance when bean leaves were immersed in 10−3 to 10−7 M BTH 3 days before the challenge inoculation. At a high concentration (10−3 M), BTH induced resistance of the same order as resistance induced by the pathogenC. lindemuthianum, although at this high concentration BTH appeared to be phytotoxic. Soil and seed treatment with 1 mg kg−1 BTH protected beans against anthracnose. BTH-mediated induced resistance was effective in susceptible and moderately resistant plants.P. aeruginosa KMPCH induced resistance in bean againstC. lindemuthianum only in a moderately resistant interaction. KMPCH-567, a salicylic acid mutant of KMPCH, failed to induce resistance, indicating that salicylic acid is important for KMPCH to induce resistance in the bean—C. lindemuthianum system.P.fluorescens WCS417 could induce resistance toC. lindemuthianum in a susceptible and in moderately resistant interactions. http://www.phytoparasitica.org posting Jan. 16, 2002.  相似文献   

2.
3.
BACKGROUND: Klebsiella oxytoca C1036 (C1036) causes induced systemic resistance (ISR) activity against the soft‐rot pathogen Pectobacterium carotovorum subsp. carotovorum SCC1 (SCC1). However, microbial metabolites from C1036 involved in ISR activity remain unknown. The present study was performed to identify an ISR‐related metabolite produced by C1036. RESULTS: The supernatants of C1036 cultures grown on Luria‐Bertani medium were subjected to solvent extraction, repeated column chromatography and preparative liquid chromatography for isolation of an ISR‐related metabolite. High‐resolution mass spectrometer analysis of the isolated metabolite indicated a C9H15O3N compound with a mass of 185.11. Low‐resolution mass spectrometer analysis of the metabolite showed a molecular ion peak at 185 and its fragment ions at 84 and 56. Nuclear magnetic resonance spectrometer analyses characterised all protons and carbons of the isolated metabolite. Based on the data, the isolated metabolite was determined to be butyl 2‐pyrrolidone‐5‐carboxylate (BPC). BPC at 12 mM significantly suppressed the disease symptoms in ISR bioassays against SCC1. CONCLUSION: This is the first report identifying BPC as an ISR‐related metabolite produced by C1036. C1036 may play a role in promoting plant growth because it produces ISR‐related metabolites against the plant pathogen SCC1. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
5.
6.
7.
Selected strains of rhizosphere bacteria reduce disease by activating a resistance mechanism in the plant named rhizobacteria-mediated induced systemic resistance (ISR). Rhizobacteria-mediated ISR resembles pathogen-induced systemic acquired resistance (SAR) in that both types of induced resistance render uninfected plant parts more resistant towards a broad spectrum of plant pathogens. Some rhizobacteria trigger the salicylic acid (SA)-dependent SAR pathway by producing SA at the root surface. In other cases, rhizobacteria trigger a different signalling pathway that does not require SA. The existence of a SA-independent ISR pathway has been demonstrated in Arabidopsis thaliana. In contrast to pathogen-induced SAR, ISR induced by Pseudomonas fluorescens WCS417r is independent of SA accumulation and pathogenesis-related (PR) gene activation but, instead, requires responsiveness to the plant hormones jasmonic acid (JA) and ethylene. Mutant analyses showed that ISR follows a novel signalling pathway in which components from the JA and ethylene response are successively engaged to trigger a defensive state that, like SAR, is controlled by the regulatory factor NPR1. Interestingly, simultaneous activation of both the JA/ethylene-dependent ISR pathway and the SA-dependent SAR pathway results in an enhanced level of protection. Thus combining both types of induced resistance provides an attractive tool for the improvement of disease control. This review focuses on the current status of our research on triggering, signalling, and expression of rhizobacteria-mediated ISR in Arabidopsis.  相似文献   

8.
病程相关蛋白(Pathogenesis-related proteins,PRs)是植物受生物或非生物胁迫后诱导并积累的一类蛋白质,具有抗病抗逆的多种功能。为检测本生烟病程相关蛋白10(Nicotiana benthamiana Pathogenesis-related protein 10,NbPR10)的表达,制备其抗血清,并用以探究其可能的特性和功能。将已有的NbPR10基因构建到原核表达载体p GEX-KG中获得重组质粒p GEXKG-NbPR10,转化大肠杆菌BL21(DE3),经0.2 m M IPTG诱导表达分子量约44 k Da的融合蛋白(含GST标签),用GST亲和柱纯化获得纯化的融合蛋白。以纯化的融合蛋白为抗原免疫家兔制备NbPR10蛋白的抗血清,经Western blot测定抗血清效价达1∶10 000,能至多检测到稀释比例为1∶320的转基因本生烟叶片中的PR10蛋白或1 ng原核表达的蛋白,且能检测到本生烟根和茎中的PR10蛋白,证明PR10在本生烟根和茎中表达量较在叶部高,为进一步研究NbPR10蛋白的功能提供参考。  相似文献   

9.
Rumex species are important weeds in grasslands and on arable land. The Rumex hybrid (R. patienta × R. tianschanicus; cv. OK‐2, Uteusha) has been planted as a forage and energy crop since 2001 in the Czech Republic, but its ecological requirements and its potential to become a new weedy species have never been investigated. In 2010 and 2011, we performed a pot experiment to investigate the effect of none, one and two cuts per year on biomass production of Rumex OK‐2 and common broad‐leaved Rumex species (Rumex obtusifolius, R. crispus and R. alpinus). The higher cutting frequency can reduce the belowground biomass, but no effect on the aboveground biomass was detected. Flowering in the seeding year was recorded in only 50% of R. obtusifolius plants. Non‐flowering R. obtusifolius plants produced significantly more belowground biomass than flowering plants under no cutting or one cut treatments. The growth response of Rumex OK‐2 to different cutting treatments was very similar to R. crispus. These similarities indicate the weed potential of the hybrid to become a troublesome weedy species, similar to R. crispus.  相似文献   

10.
BACKGROUND: Bacillus cereus C1L is a plant growth‐promoting rhizobacterium and can elicit induced systemic resistance (ISR) in plants against necrotrophic pathogens. However, little is known about ISR elicitors produced by B. cereus C1L, and no ISR elicitor has been identified and characterised. Therefore, the objective of this study is to identify volatile ISR elicitor(s) produced by B. cereus C1L. RESULTS: The volatile metabolites produced by B. cereus C1L were extracted, separated and identified by solid‐phase microextraction, gas chromatography and mass spectrometry. Dimethyl disulfide (DMDS) was the only separated metabolite being determined. Afterwards, application of DMDS by means of soil drench significantly protected tobacco and corn plants against Botrytis cinerea and Cochliobolus heterostrophus, respectively, under greenhouse conditions. The results reveal that DMDS could play an important role in ISR by B. cereus C1L. CONCLUSION: This is the first report of DMDS as an elicitor produced by an ISR‐eliciting B. cereus strain and its ability to suppress plant fungal diseases under greenhouse conditions. It is suggested that DMDS has potential for practical use in controlling plant foliar diseases besides soil fumigation. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
Recent studies have indicated that the phytohormone abscisic acid (ABA), induced in response to a variety of environmental stresses, plays an important role in modulating diverse plant–pathogen interactions. In Arabidopsis thaliana, we previously clarified that ABA suppressed the induction of systemic acquired resistance (SAR), a plant defense system induced by pathogen infection through salicylic acid (SA) accumulation. We investigated the generality of this suppressive effect by ABA on SAR using tobacco plants. For SAR induction, we used 1,2-benzisothiazole-3(2H)-one 1,1-dioxide (BIT) and benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) that activate upstream and downstream of SA in the SAR signaling pathway, respectively. Wild-type tobacco plants treated with BIT or BTH exhibited enhanced disease resistance against Tobacco mosaic virus (TMV) and tobacco wildfire bacterium, Pseudomonas syringae pv. tabaci (Pst), however, which was suppressed by pretreatment of plants with ABA. Pretreatment with ABA also suppressed the expression of SAR-marker genes by BIT and BTH, indicating that ABA suppressed the induction of SAR. ABA suppressed BTH-induced disease resistance and pathogenesis-related (PR) gene expression in NahG-transgenic plants that are unable to accumulate SA. The accumulation of SA in wild-type plants after BIT treatment was also suppressed by pretreatment with ABA. These data suggest that ABA suppresses both upstream and downstream of SA in the SAR signaling pathway in tobacco.  相似文献   

12.
Selected strains of non-pathogenic rhizobacteria have the ability to trigger an induced systemic resistance (ISR) response in plants. In Arabidopsis, rhizobacteria-mediated ISR has been extensively studied, using Pseudomonas fluorescens WCS417r as the inducing agent and P. syringae pv. tomato DC3000 (Pst) as the challenging pathogen. To investigate how far expression of ISR depends on the level of basal resistance, 10 different Arabidopsis ecotypes were screened for their potential to express WCS417r-mediated ISR and basal resistance against Pst. Two Arabidopsis ecotypes, RLD and Wassilewskija (Ws), were found to be blocked in their ability to express ISR. This ISR-noninducible phenotype correlated with a relatively low level of basal resistance against Pst. Genetic analysis of crosses between the ISR-inducible ecotypes Columbia (Col) and Landsberg erecta (Ler), on the one hand, and the non-inducible ecotypes RLD and Ws, on the other hand, revealed that ISR inducibility and basal resistance against Pst were inherited as monogenic dominant traits that are genetically linked. Neither ISR inducibility, nor basal resistance against Pst was complemented in the F1 progeny of a cross between RLD and Ws, indicating that both ecotypes are affected in the same locus. This locus, designated ISR1, was mapped between markers Ein3 and GL1 on chromosome III. Interestingly, ecotypes RLD and Ws also failed to express ISR against the oomycetous pathogen Peronospora parasitica, but they were not affected in their level of basal resistance against this pathogen. Thus, the ISR1 locus controls the expression of ISR against different pathogens but basal resistance only against Pst and not against P. parasitica. Like ecotypes RLD and Ws, ethylene-insensitive mutants showed the isr1 phenotype in that they were unable to express WCS417r-mediated ISR and show enhanced susceptibility to Pst infection. Analysis of ethylene responsiveness of RLD and Ws revealed that both ecotypes exhibit reduced sensitivity to ethylene. Therefore, it is proposed that the Arabidopsis ISR1 locus encodes a component of the ethylene-response pathway that plays an important role in ethylene-dependent resistance mechanisms.  相似文献   

13.
Downy mildew, caused by Plasmopara viticola, is one of the most destructive diseases of grapevine and is controlled with intense application of chemical fungicides. Treatment with Trichoderma harzianum T39 (T39) or benzothiadiazole‐7‐carbothioic acid S‐methyl ester (BTH) has been previously shown to activate grapevine resistance to downy mildew and reduce disease symptoms in the Pinot noir cultivar. However, enhancement of plant resistance can be affected by several factors, including plant genotype. In order to further extend the use of resistance inducers against downy mildew, the physiological and molecular properties of T39‐ and BTH‐activated resistance in different cultivars of table and wine grapes were characterized under greenhouse conditions. T39 treatment reduced downy mildew symptoms, but the degree of efficacy differed significantly among grapevine cultivars. However, efficacy of BTH‐activated resistance was consistently high in the different cultivars. Expression profiles of defence‐related genes differed among cultivars in response to resistance inducers and to pathogen inoculation. T39 treatment enhanced the expression of defence‐related genes in the responsive cultivars, before and after P. viticola inoculation. A positive correlation between the efficacy of T39 and the expression level of defence‐related genes was found in Primitivo and Pinot noir plants, while different genes or more complex processes were probably activated in Sugraone and Negroamaro. The data reported here suggest that the use of a responsive cultivar is particularly important to maximize the efficacy of resistance inducers and new natural inducers should be explored for the less responsive cultivars.  相似文献   

14.
P. H. Goodwin  W. Gao 《Plant pathology》2017,66(8):1299-1307
The aim of this study was to determine if treatment of soil with a branched‐chain alkane mixture known to induce resistance against Colletotrichum orbiculare also changes populations of bacterial endophytes from Nicotiana benthamiana. Eight culturable bacterial endophyte types matching six species of Bacillus and two species of Pseudomonas were found in roots, stem + petioles and/or leaves. Application of the branched‐chain alkane mixture resulted in significantly higher endophyte populations compared to the water or emulsifier controls for the Pseudomonas sp. LW3, Bacillus simplex LW4 and Bacillus pumilis LW5 colony types in roots and the B. simplex LW4 colony type in stem + petioles. The Pseudomonas sp. LW3 and B. simplex LW4 colony types also had higher populations in pure cultures under in vitro conditions with the branched‐chain alkane mixture compared to the controls. Inoculation with each of the eight colony types increased their population in the plant and induced resistance against C. orbiculare, with the most effective being Pseudomonas sp. LW3 and Pseudomonas alcaligenes SW1. Most of the endophytes could inhibit C. orbiculare growth in vitro, but the level of resistance in planta was not correlated to the ability of the colony type to inhibit C. orbiculare in culture. Thus, a branched‐chain alkane mixture can selectively affect the biomass of a subset of bacterial endophytes, demonstrating that it is a novel in planta endophyte growth promoter.  相似文献   

15.
The glycolipid antibiotic rhamnolipid B isolated from Pseudomonas aeruginosa strain B5 was evaluated for in vitro antifungal activity and in vivo control against phytophthora blight and anthracnose under glasshouse conditions. Rhamnolipid B showed antifungal activity against Cercospora kikuchii, Cladosporium cucumerinum, Colletotrichum orbiculare, Cylindrocarpon destructans, Magnaporthe grisea and Phytophthora capsici. Microscopic observation revealed that the high level of antifungal activity (10 µg ml −1) against P capsici was mainly due to a lytic effect on zoospores. Zoospore lysis began in the presence of 10 µg ml −1 of rhamnolipid B and most of the zoospores were collapsed at 25 µg ml −1. Rhamnolipid B showed inhibitory activity against the germination of zoospores and hyphal growth of P capsici at concentrations of 50 µg ml −1. Spore germination of the anthracnose plant pathogen C orbiculare was also inhibited in the presence of 50 µg ml −1 of rhamnolipid B, although hyphal growth was not affected at this concentration. In the glasshouse, the efficacy of rhamnolipid B against phytophthora blight was similar to that of metalaxyl on pepper plants when treated just before inoculation with P capsici. Treatment with either at 500 µg ml −1 completely protected pepper plants from phytophthora blight. Rhamnolipid B also suppressed the development of C orbiculare infection on leaves of cucumber plants. © 2000 Society of Chemical Industry  相似文献   

16.
Initial experiment on the reactions of five Japanese cultivars of cucumber toColletotrichum orbiculare infection in the greenhouse revealed that cv Suyo and Gibai were susceptible and moderately susceptible, respectively, while cv Shogoin fushinari and Sagami hanjiro were resistant to infection byC. orbiculare; cv Ochiai fushinari was moderately resistant. The ability of 16 plant growth promoting fungi (some isolates belonged to species ofPhoma and some non-sporulating isolates) isolated from zoysiagrass rhizospheres to induce systemic resistance in the above five cucumber cultivars was tested by growing plants in potting medium infested with barley grain inocula of PGPF in the greenhouse. The second true leaves of 21-day-old plants were challenge inoculated withC. orbiculare and disease assessed. Nine, out of 16 isolates, caused significant reduction of disease caused byC. orbiculare in at least two cultivars.Phoma isolates (GS8-1 and GS8-2) and non-sporulating isolates (GU21-2, GU23-3, and GU24-3) significantly reduced the disease in all the five cultivars. The disease suppression in cucumber was due to the induction of systemic resistance, since the inducer(s) and the pathogen were separated spatially and that the inducer did not colonize aerial portions. The resistance induced by certain isolates in a susceptible cultivar was less than that in a resistant cultivar. Disease suppression caused by isolate GU21-2 was similar to theC. orbiculare induced control in certain cultivars. The average rate of expansion of lesion diameter on leaves due toC. orbiculare was slower due to induction with the selected plant growth promoting fungi compared to the uninduced control plants. Roots of four cultivars were colonized by only three isolates, however, roots of one cultivar (Suyo) was colonized by five isolates suggesting the cultivar-specific root colonization ability.Abbreviations cv cultivar(s) - PGPF plant growth promoting fungal isolates - PGPR plant growth promoting rhizobacteria  相似文献   

17.
18.

Chemical fungicides are mainly used to control Colletotrichum orbiculare, but this fungal pathogen usually develops resistance to the pesticides. Natural compounds are therefore desirable for controlling C. orbiculare. Here, a culture filtrate (CF) from ME202, a fungal strain isolated from Trifolium incarnatum in Shimane Prefecture in 2020, was tested in vitro and found to inhibit conidial germination of C. orbiculare. The inhibitory compound in ME202-CF was soluble in ethyl acetate. The ethyl acetate extract of ME202-CF (ME202-ECF) significantly inhibited in vitro conidial germination of C. orbiculare in a dose-dependent manner and lesion formation on cucumber leaves. The inhibitory compounds were heat stable at 40–121 °C and molecular mass?≥?500 and ≥?1000 Da. Thin layer chromatography–bioautography of ME202-ECF showed that the compounds inhibiting C. orbiculare growth had an Rf of 0.81 and 0.91. Furthermore, ME202 was found to be a member of the genus Cercospora through sequence analysis of the internal transcribed spacer and 5.8 S rDNA. These results suggest that secondary metabolites of Cercospora spp., such as ME202, can be used to develop new fungicides against anthracnose.

  相似文献   

19.
The Arabidopsis MPK3 gene product participates in disease resistance mediated by the MAP kinase cascade. The expression of the MPK3 gene is induced by pathogen inoculation and treatment with chemicals such as salicylic acid (SA) and methyl jasmonate (JA), but the detailed expression pattern of the MPK3 gene has been largely unknown. To investigate MPK3 gene expression in response to disease stress, we fused the MPK3 promoter to the firefly luciferase gene to create a real-time monitoring system for regulated gene expression in planta. The results of an in vivo reporter assay using transgenic Arabidopsis plants harboring MPK3::Fluc showed that the MPK3 promoter activity was induced by treatment with chemicals such as SA and benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), that induce defense gene expression. Inoculation with the fungal pathogen Botrytis cinerea resulted in systemic induction of MPK3::Fluc.  相似文献   

20.
Ralstonia solanacearum causes bacterial wilt disease in Solanaceae spp. Expression of the Phytophthora inhibitor protease 1 (PIP1) gene, which encodes a papain‐like extracellular cysteine protease, is induced in R. solanacearum‐inoculated stem tissues of quantitatively resistant tomato cultivar LS‐89, but not in susceptible cultivar Ponderosa. Phytophthora inhibitor protease 1 is closely related to Rcr3, which is required for the Cf‐2‐mediated hypersensitive response (HR) to the leaf mould fungus Cladosporium fulvum and manifestation of HR cell death. However, up‐regulation of PIP1 in R. solanacearum‐inoculated LS‐89 stems was not accompanied by visible HR cell death. Nevertheless, upon electron microscopic examination of inoculated stem tissues of resistant cultivar LS‐89, several aggregated materials associated with HR cell death were observed in xylem parenchyma and pith cells surrounding xylem vessels. In addition, the accumulation of electron‐dense substances was observed within the xylem vessel lumen of inoculated stems. Moreover, when the leaves of LS‐89 or Ponderosa were infiltrated with 106 cells mL?1 R. solanacearum, cell death appeared in LS‐89 at 18 and 24 h after infiltration. The proliferation of bacteria in the infiltrated leaf tissues of LS‐89 was suppressed to approximately 10–30% of that in Ponderosa, and expression of the defence‐related gene PR‐2 and HR marker gene hsr203J was induced in the infiltrated tissues. These results indicated that the response of LS‐89 is a true HR, and induction of vascular HR in xylem parenchyma and pith cells surrounding xylem vessels seems to be associated with quantitative resistance of LS‐89 to R. solanacearum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号