首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
BACKGROUND: Bacillus cereus C1L is a plant growth‐promoting rhizobacterium and can elicit induced systemic resistance (ISR) in plants against necrotrophic pathogens. However, little is known about ISR elicitors produced by B. cereus C1L, and no ISR elicitor has been identified and characterised. Therefore, the objective of this study is to identify volatile ISR elicitor(s) produced by B. cereus C1L. RESULTS: The volatile metabolites produced by B. cereus C1L were extracted, separated and identified by solid‐phase microextraction, gas chromatography and mass spectrometry. Dimethyl disulfide (DMDS) was the only separated metabolite being determined. Afterwards, application of DMDS by means of soil drench significantly protected tobacco and corn plants against Botrytis cinerea and Cochliobolus heterostrophus, respectively, under greenhouse conditions. The results reveal that DMDS could play an important role in ISR by B. cereus C1L. CONCLUSION: This is the first report of DMDS as an elicitor produced by an ISR‐eliciting B. cereus strain and its ability to suppress plant fungal diseases under greenhouse conditions. It is suggested that DMDS has potential for practical use in controlling plant foliar diseases besides soil fumigation. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
The hypothesis that dispersin B (DspB), an enzyme from the periodontal pathogen Aggregatibacter actinomycetemcomitans that degrades the extracellular matrix polysaccharide PGA, will inhibit biofilm formation of the soft rot pathogen Pectobacterium carotovorum subsp. carotovorum in infected plants was tested by constitutive expression of DspB in tobacco plants. All the transgenic plants expressed properly folded and active DspB enzyme, although at different expression levels. In virulence assays, even the transgenic plant line D10, which produced a low level of DspB compared to other lines, showed significant resistance against P. carotovorum subsp. carotovorum, suggesting that DspB could be a valuable agent for biological control of P. carotovorum subsp. carotovorum infection in crop plants.  相似文献   

4.
Peach gummosis, caused by Botryosphaeria spp. fungi, is the process of gum accumulation and exudation in plants. Ethephon (2‐chloroethylphosphonic acid) has profound effects on plants, including enhanced production of secondary metabolites and regulation of plant diseases. This study investigates the effects of application of ethephon before and after inoculation with Lasiodiplodia theobromae on gum formation. Gum formation was promoted by ethephon treatment prior to pathogen inoculation, but inhibited by ethephon applied after the pathogen. The inhibitory effect was counteracted by 1‐methylcyclopropane, which is an ethylene signal inhibitor. 1‐methylcyclopropane also promoted gum formation. Exposure of three isolates of Botryosphaeria to ethephon inhibited mycelial growth. Both treatment methods increased the sugar content at 12 and 24 h post‐inoculation (hpi). However, the sucrose, glucose and fructose contents were significantly higher in shoots with ethephon post‐treatment (application of ethephon after the pathogen inoculation) than those in shoots with ethephon pre‐treatment (application of ethephon prior to pathogen inoculation) at 48 and 72 hpi. The expression of two putative senescence‐related genes, SEN2 and SEN4, were significantly enhanced in pre‐ and post‐treated shoots with ethephon at 24, 48 and 72 hpi. Ethephon application also up‐regulated expression of the pathogenesis‐related protein PR4 while down‐regulating PR1a and PR10. The results show that ethephon has a dual function in regulating gum formation by affecting both the peach shoots and the pathogen.  相似文献   

5.
BACKGROUND: The antifungal properties of chitosan and acibenzolar‐S‐methyl were evaluated to assess their potential for protecting grapes against Botrytis cinerea Pers.: Fr. isolated from Vitis vinifera L. The objectives were to determine the effects of these compounds on the in vitro development of B. cinerea and to assess their effectiveness at controlling grey mould on grapes stored at different temperatures. RESULTS: Both agents significantly inhibited the radial growth of this fungus species. The EC50 was 1.77 mg mL?1 for chitosan and 3.44 mg mL?1 for acibenzolar‐S‐methyl. In addition, single grapes treated with aqueous solutions of chitosan (1.0 and 2.5 mg mL?1) and acibenzolar‐S‐methyl (1.0 and 3.0 mg mL?1) were inoculated with B. cinerea and incubated at both 4 and 24 °C. After 4 days at 24 °C, all the concentrations of chitosan and acibenzolar‐S‐methyl significantly reduced B. cinerea growth. However, at 4 °C, significant differences were only observed between chitosan at 2.5 mg mL?1 and acibenzolar‐S‐methyl at both 1.0 and 3.0 mg mL?1 and the corresponding controls. After 3 days at 24 °C, the greatest reduction in lesion size was obtained in grapes pretreated with acibenzolar‐S‐methyl at 3.0 mg mL?1. Only the highest doses of these products significantly reduced the lesion diameters when grapes were stored for 3 days at 4 °C. CONCLUSIONS: Chitosan and acibenzolar‐S‐methyl could directly inhibit the growth of Botrytis cinerea in vitro and confer resistance on grapes against grey mould. Pretreatment with these compounds could be an alternative to traditional fungicides in post‐harvest disease control in grapes. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
Selected strains of non-pathogenic rhizobacteria have the ability to trigger an induced systemic resistance (ISR) response in plants. In Arabidopsis, rhizobacteria-mediated ISR has been extensively studied, using Pseudomonas fluorescens WCS417r as the inducing agent and P. syringae pv. tomato DC3000 (Pst) as the challenging pathogen. To investigate how far expression of ISR depends on the level of basal resistance, 10 different Arabidopsis ecotypes were screened for their potential to express WCS417r-mediated ISR and basal resistance against Pst. Two Arabidopsis ecotypes, RLD and Wassilewskija (Ws), were found to be blocked in their ability to express ISR. This ISR-noninducible phenotype correlated with a relatively low level of basal resistance against Pst. Genetic analysis of crosses between the ISR-inducible ecotypes Columbia (Col) and Landsberg erecta (Ler), on the one hand, and the non-inducible ecotypes RLD and Ws, on the other hand, revealed that ISR inducibility and basal resistance against Pst were inherited as monogenic dominant traits that are genetically linked. Neither ISR inducibility, nor basal resistance against Pst was complemented in the F1 progeny of a cross between RLD and Ws, indicating that both ecotypes are affected in the same locus. This locus, designated ISR1, was mapped between markers Ein3 and GL1 on chromosome III. Interestingly, ecotypes RLD and Ws also failed to express ISR against the oomycetous pathogen Peronospora parasitica, but they were not affected in their level of basal resistance against this pathogen. Thus, the ISR1 locus controls the expression of ISR against different pathogens but basal resistance only against Pst and not against P. parasitica. Like ecotypes RLD and Ws, ethylene-insensitive mutants showed the isr1 phenotype in that they were unable to express WCS417r-mediated ISR and show enhanced susceptibility to Pst infection. Analysis of ethylene responsiveness of RLD and Ws revealed that both ecotypes exhibit reduced sensitivity to ethylene. Therefore, it is proposed that the Arabidopsis ISR1 locus encodes a component of the ethylene-response pathway that plays an important role in ethylene-dependent resistance mechanisms.  相似文献   

7.
BACKGROUND: Fenoxaprop‐P‐ethyl is a herbicide used on cereals and in particular on rice, the degradation of which leads to several relevant metabolites. The herbicide is used together with an agronomic safener such as isoxadifen‐ethyl, which also generates some metabolites. The present work was aimed at developing and validating an analytical method for the determination of the above parent compounds and their main metabolites in the edible fractions of rice. Parent compounds were extracted in acetonitrile and determined by gas chromatography with a mass spectrometer detector, while metabolites were extracted in acetonitrile and analysed by liquid chromatography tandem mass spectrometry. RESULTS: The method was validated through recovery tests in rice straw, grain and plant: accuracy was in the range 76–86% and 90–103% for parent compounds and metabolites respectively. Precision, as relative standard deviation, was in the range 3–11% and 6–17% for parent compounds and metabolites respectively. The limit of detection was 0.01 mg kg?1 for each analyte, while the limit of quantification was set at 0.05 mg kg?1. CONCLUSION: The analytical method is suitable for quantitative determination of each analyte considered in rice commodities. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Fipronil toxicity and metabolism were studied in two insecticide‐resistant, and one susceptible western corn rootworm (Diabrotica virgifera virgifera, LeConte) populations. Toxicity was evaluated by exposure to surface residues and by topical application. Surface residue bioassays indicated no differences in fipronil susceptibility among the three populations. Topical bioassays were used to study the relative toxicity of fipronil, fipronil + the mono‐oxygenase inhibitor piperonyl butoxide, and fipronil's oxidative sulfone metabolite in two populations (one resistant with elevated mono‐oxygenase activity). Fipronil and fipronil‐sulfone exhibited similar toxicity and application of piperonyl butoxide prior to fipronil resulted in marginal effects on toxicity. Metabolism of [14C]fipronil was evaluated in vivo and in vitro in the three rootworm populations. In vivo studies indicated the dominant pathway in all populations to be formation of the oxidative sulfone metabolite. Much lower quantities of polar metabolites were also identified. In vitro studies were performed using sub‐cellular protein fractions (microsomal and cytosolic), and glutathione‐agarose purified glutathione‐S‐transferase. Oxidative sulfone formation occurred almost exclusively in in vitro microsomal reactions and was increased in the resistant populations. Highly polar metabolites were formed exclusively in in vitro cytosolic reactions. In vitro reactions performed with purified, cytosolic glutathione‐S‐transferase (MW = 27 kDa) did not result in sulfone formation, although three additional polar metabolites not initially detectable in crude cytosolic reactions were detected. Metabolism results indicate both cytochromes P450 and glutathione‐S‐transferases are important to fipronil metabolism in the western corn rootworm and that toxic sulfone formation by P450 does not affect net toxicity. © 2000 Society of Chemical Industry  相似文献   

9.
Resistance in Nicotiana benthamiana against anthracnose caused by the hemibiotrophic fungus Colletotrichum orbiculare was activated by benzothiadiazole (BTH), (2R,3R)­butanediol or PC1, an isoparaffin‐based mixture. In inoculation experiments, BTH, (2R,3R)­butanediol and PC1 reduced the number of lesions per leaf area caused by C. orbiculare by 98%, 77% and 81%, respectively. Foliar application of BTH induced expression of genes for the acidic pathogenesis‐related (PR) proteins, NbPR‐1a, NbPR‐3Q and acidic NbPR‐5. In contrast, soil application of (2R,3R)­butanediol or PC1 primed expression of genes for the basic PR proteins, NbPRb‐1b, basic NbPR‐2 and NbPR‐5dB. These results are consistent with the activation of salicylic‐acid‐dependent systemic acquired resistance (SAR) by BTH and that of jasmonate/ethylene‐dependent induced systemic resistance (ISR) by (2R,3R)­butanediol or PC1, and show that (2R,3R)­butanediol and PC1 can affect gene expression similarly to plant growth‐promoting rhizobacteria. However, the effects of (2R,3R)‐butanediol and PC1 were not identical. In addition to priming, (2R,3R)‐butanediol induced expression of basic NbPR‐2, whereas PC1 treatment induced expression of both NbPRb‐1b and basic NbPR‐2. Although a number of microbial products, such as (2R,3R)­butanediol, have been shown to produce ISR, this is the first demonstration that an isoparaffin‐based mixture, not derived from a microorganism, can produce ISR.  相似文献   

10.
The metabolism of the herbicide glufosinate‐ammonium was investigated in heterotrophic cell suspension and callus cultures of transgenic (bar‐gene) and non‐transgenic sugarbeet (Beta vulgaris). Similar studies were performed with suspensions of carrot (Daucus carota), purple foxglove (Digitalis purpurea) and thorn apple (Datura stramonium). 14C‐labelled chemicals were the (racemic) glufosinate, L ‐glufosinate, and D ‐glufosinate, as well as the metabolites N‐acetyl L ‐glufosinate and 3‐(hydroxymethylphosphinyl)propionic acid (MPP). Cellular absorption was generally low, but depended noticeably on plant species, substance and enantiomer. Portions of non‐extractable residues ranged from 0.1% to 1.2% of applied 14C. Amounts of soluble metabolites resulting from glufosinate or L ‐glufosinate were between 0.0% and 26.7% of absorbed 14C in non‐transgenic cultures and 28.2% and 59.9% in transgenic sugarbeet. D ‐Glufosinate, MPP and N‐acetyl L ‐glufosinate proved to be stable. The main metabolite in transgenic sugarbeet was N‐acetyl L ‐glufosinate, besides traces of MPP and 4‐(hydroxymethylphosphinyl)butanoic acid (MPB). In non‐transgenic sugarbeet, glufosinate was transformed to a limited extent to MPP and trace amounts of MPB. In carrot, D stramonium and D purpurea, MPP was also the main product; MPB was identified as a further trace metabolite in D stramonium and D purpurea. © 2001 Society of Chemical Industry  相似文献   

11.
In Shizuoka Prefecture, Japan, glyphosate‐resistant Lolium multiflorum is a serious problem on the levees of rice paddies and in wheat fields. The mechanism of resistance of this biotype was analyzed. Based on LD50, the resistant population was 2.8–5.0 times more resistant to glyphosate than the susceptible population. The 5‐enolpyruvyl‐shikimate‐3‐phosphate synthase (EPSPS) gene sequence of the resistant biotype did not show a non‐synonymous substitution at Pro106, and amplification of the gene was not observed in the resistant biotype. The metabolism and translocation of glyphosate were examined 4 days after application through the direct detection of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) using liquid chromatograph‐tandem mass spectrometer (LC‐MS/MS). AMPA was not detected in either biotype in glyphosate‐treated leaves or the other plant parts. The respective absorption rates of the susceptible and resistant biotypes were 37.90 ± 3.63% and 41.09 ± 3.36%, respectively, which were not significantly different. The resistant biotype retained more glyphosate in a glyphosate‐treated leaf (91.36 ± 1.56% of absorbed glyphosate) and less in the untreated parts of shoots (5.90 ± 1.17%) and roots (2.76 ± 0.44%) compared with the susceptible biotype, 79.58 ± 3.73%, 15.77 ± 3.06% and 4.65 ± 0.89%, respectively. The results indicate that the resistance mechanism is neither the acquisition of a metabolic system nor limiting the absorption of glyphosate but limited translocation of the herbicide in the resistant biotype of L. multiflorum in Shizuoka Prefecture.  相似文献   

12.
Quorum sensing in Gram‐negative bacteria is regulated by diffusible signal molecules called N‐acyl‐l ‐homoserine lactones (AHLs). These molecules are degraded by lactonases. In this study, six Bacillus simplex isolates were characterized and identified as a new quorum‐quenching species of Bacillus. An aiiA gene encoding an AHL‐lactonase was identified based on evidence that: (i) it showed high homology with other aiiA genes of Bacillus sp.; (ii) the deduced amino acid sequence contained two conserved regions, 104SHLHFDH111 and 165TPGHTPGH173, characteristic of the metallo‐β‐lactamase superfamily; and (iii) the protein had zinc‐dependent AHL‐degrading activity. Additionally, the expression of the aiiA gene was significantly up‐regulated by 3‐oxo‐AHL. The AHL‐lactonase inhibited multiplication of the 3‐oxo‐C6‐AHL‐producing plant pathogen Erwinia amylovora sy69 both in vitro and in planta. The results provide support for the use of the quorum‐quenching functionality of B. simplex in the integrated control of the devastating fire blight pathogen.  相似文献   

13.
1,5‐Diphenyl‐1‐pentanone (A) and 1,5‐diphenyl‐2‐penten‐1‐one (B) are natural products extracted for the first time from Stellera chamaejasme. Laboratory bioassay showed that the two products have strong contact activity and very good anti‐feedant activity against Aphis gossypii and Schizaphis graminum. Both products showed dose‐dependent relationships for both forms of activity against the two aphids, the contact activity of B being about twice that of A. Both products were inferior to methomyl in contact activity but superior in anti‐feedant activity against the two aphids. This is the first report of aphicidal activity in these two compounds, which may represent a new class of aphicide. © 2001 Society of Chemical Industry  相似文献   

14.
Antibiosis has been shown to be an important mode of action by Trichoderma species used in the protection of grapevine pruning wounds from infection by trunk pathogens. The major active compound from Trichoderma isolates known to protect grapevine pruning wounds from trunk pathogen infection was isolated and identified. The compound, a 6‐pentyl‐α‐pyrone (6PP), was found to be the major secondary metabolite, by quantity, which accumulated in the culture filtrate of Tharzianum isolate T77 and the two Tatroviride isolates UST1 and UST2. Benzimidazole resistant mutants generated from these isolates also produced 6PP as their main secondary metabolite, except for a mutant of T77 that had lost its ability to produce 6PP. The isolates UST1 and UST2 were co‐cultured with the grapevine trunk pathogens Eutypa lata and Neofusicoccum parvum in a minimal defined medium and a grapevine cane‐based medium (GCBM). Co‐culturing UST1 with Nparvum induced 6PP production in the minimal defined medium and the GCBM. The production of 6PP by UST2 was induced in the GCBM, while co‐culturing with the two trunk pathogens either reduced or had no effect on 6PP production. Mycelial growth and ascospore/conidia germination of Elata, Naustrale, Nparvum and Phaeomoniella chlamydospora were inhibited by 6PP in a concentration‐dependent manner. The results show that the presence of Nparvum and grapevine wood elicits the production of 6PP, suggesting that this metabolite is involved in Trichoderma–pathogen interactions on grapevine pruning wounds.  相似文献   

15.
A preinoculative soil drench application of 0·5 mm β‐aminobutyric acid (BABA) significantly inhibited colonization of oilseed rape (Brassica napus, susceptible cultivar Falcon) by Verticillium longisporum and also prevented plant stunting caused by the pathogen. To better understand the defence responses induced by BABA, the presence of occlusions in the plant hypocotyl, levels of salicylic acid (SA) and hydrogen peroxide (H2O2), phenylalanine ammonia lyase (PAL) activity and expression of PR‐1 and PDF1.2 genes were examined. Transverse sections through the hypocotyl region of BABA‐treated plants showed clear vessels surrounded by phenol‐storing cells, in contrast to numerous obstructed vessels in water‐treated plants, in response to the pathogen. A significant increase in SA levels was observed in the hypocotyls of both water‐ and BABA‐treated plants in response to the pathogen; however, SA levels were unrelated to disease resistance. The level of H2O2 decreased in both treatments in response to the pathogen. A significant increase in PAL activity was observed in hypocotyl tissues of BABA‐treated plants. The expression patterns of PR‐1 and PDF1.2 were similar in the two treatments in response to the pathogen, indicating no involvement of these genes in resistance. The results indicate a similar organ specificity of the plant hypocotyl for chemically induced internal resistance as for genotype‐related resistance, two phenomena which, however, are based on contrasting cytological responses in the vascular tissues. Nonetheless, evidence is provided that the activity of the phenylpropanoid pathway plays a crucial role in both types of resistance.  相似文献   

16.
The route and rate of degradation of florasulam, a low‐rate triazolopyrimidine sulfonanilide herbicide, was investigated in six soil types under aerobic conditions at 20 or 25 °C. Degradation products were isolated and identified by mass spectroscopy. Florasulam was rapidly degraded by microbial action with an average half‐life of 2.4 days (range 0.7 to 4.5 days). The first step in the degradation pathway involved conversion of the methoxy group on the triazolopyrimidine ring to a hydroxy group to form N‐(2,6‐difluorophenyl)‐8‐fluoro‐5‐hydroxy[1,2,4]triazolo[1,5‐c]pyrimidine‐2‐sulfonamide. This metabolite degraded, with a half‐life of 10 to 61 days, via partial breakdown of the triazolopyrimidine ring to form N‐(2,6‐difluorophenyl)‐5‐aminosulfonyl‐1H‐1,2,4‐triazole‐3‐carboxylic acid. This was followed by cleavage of the sulfonamide bridge to form 5‐(aminosulfonyl)‐1H‐1,2,4‐triazole‐3‐carboxylic acid. Other degradation processes involved decarboxylation of the carboxylic acid metabolites and mineralisation to form carbon dioxide and non‐extractable residues. © 2000 Society of Chemical Industry  相似文献   

17.
The methanol extract of Bletilla striata, an ornamental orchid in eastern Asia, exhibited plant growth‐inhibitory activity. It was purified by continuous chromatography, based on the inhibitory activity against the growth of lettuce seedlings, resulting in two glycosidic compounds, militarine and dactylorhin A. The EC50 values of militarine and dactylorhin A against the radicle elongation of the lettuce seedlings were 0.28 and 0.88 mmol L?1, respectively. The amount of militarine and dactylorhin A in the methanol extract of the aerial part of B. striata was calculated to be 5.6 and 7.5 mg g?1 fresh weight, respectively. The inhibitory activity of militarine and its content in the methanol extract revealed that the plant growth‐inhibitory activity of the extract of B. striata was mainly related to militarine. The inhibitory activity of militarine against the growth of Italian ryegrass and timothy were of the same level as that of lettuce.  相似文献   

18.
Cyclization of 3‐aryl‐1‐(2‐hydroxyphenyl)prop‐2‐en‐1‐ones with hydrazine hydrate in refluxing formic acid afforded the title ligands, 5‐aryl‐1‐formyl‐4,5‐dihydro‐3‐(2‐hydroxyphenyl)‐1H‐pyrazoles (HL1–HL4, Ar = Ph, 4‐CH3O‐C6H4‐, 2‐furyl, 2‐thienyl). Reaction of HL1–HL4 with the divalent metal ions, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+, afforded novel complexes of the type [ML2] (M = metal ion; L = deprotonated ligand) which were characterized by elemental analyses, molecular weight determinations, molar conductances, magnetic moments and electronic and infrared spectral data. The ligands behaved as tridentate, coordinating through the phenolic oxygen after deprotonation, N‐2 of the pyrazole ring and oxygen of the 1‐formyl group. The ligands and their complexes were evaluated for growth‐inhibiting activity against four phytopathogenic fungi. Macrophomina phaseoli was generally most sensitive followed by Alternaria alternata and Colletotrichum falcatum while Fusarium oxysporum was least sensitive to the tested compounds. The ligand HL1 and its complexes showed the best activity against the fungi tested. © 2000 Society of Chemical Industry  相似文献   

19.
Wasabi (Wasabia japonica) is grown for its highly-valued rhizome which is used as a condiment in Japanese food. Symptoms of vascular blackening in the rhizome were first observed in 2005 in plants grown in British Columbia, Canada. Microscopic observations and microbial isolation from infected tissues revealed that most of the xylem tracheid cells were blackened and bacteria were consistently associated with symptomatic plants. The bacterium most frequently recovered was identified as Pectobacterium carotovorum subsp. carotovorum (Pcc) using BioLog™ and sequencing of a specific ~510 bp IGS region. Pathogen-free plants obtained using meristem-tip micropropagation were inoculated with a wasabi isolate of Pcc. Vascular blackening symptoms developed in the rhizome after 8 weeks when the rhizome was first wounded by stabbing or cutting, or if the roots were pre-inoculated with Pythium species isolated from rhizome epidermal tissues, followed by inoculation with Pcc at 1 × 108 cells ml−1. Xylem tracheid cells were blackened and Pcc was reisolated from all diseased tissues. The highest frequency of rhizome vascular blackening occurred at 22°C and 27°C and these tissues occasionally succumbed to soft rot at higher temperatures, but not when inoculated tissues were incubated at 10°C. The rooting medium used by growers for vegetative propagation of wasabi was shown to contain Pcc but the pathogen was not recovered from the irrigation water. Entry of Pcc through wounds on wasabi rhizomes and the host tissue response result in symptoms of vascular blackening.  相似文献   

20.
Potato early dying (PED) is a disease complex primarily caused by the fungus Verticillium dahliae. Pectolytic bacteria in the genus Pectobacterium can also cause PED symptoms as well as aerial stem rot (ASR) of potato. Both pathogens can be present in potato production settings, but it is not entirely clear if additive or synergistic interactions occur during co‐infection of potato. The objective of this study was to determine if co‐infection by V. dahliae and Pectobacterium results in greater PED or ASR severity using a greenhouse assay and quantitative real‐time PCR to quantify pathogen levels in planta. PED symptoms caused by Pectobacterium carotovorum subsp. carotovorum isolate Ec101 or V. dahliae isolate 653 alone included wilt, chlorosis and senescence and were nearly indistinguishable. Pectobacterium wasabiae isolate PwO405 caused ASR symptoms including water‐soaked lesions and necrosis. Greater Pectobacterium levels were detected in plants inoculated with PwO405 compared to Ec101, suggesting that ASR can result in high Pectobacterium populations in potato stems. Significant additive or synergistic effects were not observed following co‐inoculation with these strains of Vdahliae and Pectobacterium. However, infection coefficients of V. dahliae and Ec101 were higher and premature senescence was greater in plants co‐inoculated with both pathogens compared to either pathogen alone in both trials, and Vdahliae levels were greater in basal stems of plants co‐inoculated with either Pectobacterium isolate. Overall, these results indicate that although co‐infection by Pectobacterium and V. dahliae does not always result in significant additive or synergistic interactions in potato, co‐infection can increase PED severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号