首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an integrated fractional-N low-noise frequency synthesizer for satellite applications. By using two integrated VCOs and combining digital and analog tuning techniques, a PLL lock range from 8 to 12 GHz is achieved. Due to a small VCO fine tuning gain and optimized charge pump output biasing, the phase noise is low and almost constant over the tuning range. All 16 sub-bands show a tuning range above 900 MHz each, allowing temperature compensation without sub-band switching. This makes the synthesizer robust against variations of the device parameters with process, supply voltage, temperature and aging. The measured phase noise is ?87 dBc/Hz and ?106 dBc/Hz at 10 kHz and 1 MHz offset, respectively. In integer-N mode, phase noise values down to ?98 dBc/Hz at 10 kHz and ?111 dBc/Hz at 1 MHz offset, respectively, were measured.  相似文献   

2.
以ADF4360芯片为核心,设计实现了频率综合器作为1.95 GHz一次变频超外差射频接收机的本振部分,并制作了单片机控制电路。经测试,可以在1.6GHz~1.95GHz范围内以0.5MHz为步长调节输出本振信号频率。在频率为1.9GHz时,相位噪声为-68dBc/Hz(1kHzoffset)、-71dBc/Hz(10kHz offset)、-110dBc/Hz(100kHz offset)、-115dBc/Hz(1MHz off-set)。频率偏差小于50kHz。  相似文献   

3.
With the combination of the technique of PLL, DDS and multiplier, a 3 mm band hopping frequency synthesizer with high frequency stability and low phase noise has been presented, which is characterized by nice performances. The design includes an X-band hopping frequency source, which is the LO for millimeter-wave harmonic mixing. Once the interim frequency being locked by the phase-locked loop, the corresponding 3 mm hopping frequency would be locked. Measurement result shows that the output frequency is 93.24~93.748 GHz, the bandwidth is 508 MHz, the stepping frequency is 4 MHz, and the phase noise is about -82dBc/Hz at 10 kHz offset.  相似文献   

4.
A novel fractional-N frequency synthesizer which is based on delta sigma modulator (DSM) and specialized for single-chip UHF 860-to-960 MHz band radio frequency identification (RFID) reader is proposed in this paper. The fractional-N synthesizer is implemented in 0.18 μm CMOS process. The phase noise of the fractional-N synthesizer is approximately ?109 and ?129 dBc/Hz at 200 kHz and 1 MHz offset from 900 MHz operating frequency while drawing 9.6 mA from 1.8 V power supply. The synthesizer is evaluated by implementing it in a direct conversion RF front-end. The front-end features a noise figure of 3.5 dB and an input-referred third-order intercept point of 5 dBm.  相似文献   

5.
A multi-band frequency synthesizer for In-phase and Quadrature (I/Q) LO signal generation in Digital TV tuners is presented. Using divisor numbers other than powers of 2 (2 n ) for quadrature generation, reduces the required frequency range of the VCO, hence the number of VCO circuits, in multi-band frequency synthesizers. In the proposed synthesizer, VHF, UHF and L-band frequencies are covered with only one VCO. This is achieved by using a novel divide-by-3 circuit which produces precise I/Q LO signals. The VCO tuning range in this design is 2,400–3,632 MHz which is covered by a 6-bit switched-capacitor bank. A fast adaptive frequency calibration block selects the closest VCO frequency to the target frequency by setting the coarse-tuning code prior to the start of phase lock. A programmable charge pump is used to reduce variations in PLL characteristics over the frequency range. The synthesizer has been fabricated in a 0.18 μm CMOS technology and the die area is 1.7 × 1.6 mm2. It consumes 27 mA from a 1.8 V power supply. Measurement results show operation of the proposed divide-by-3 circuit over the entire VCO frequency range. The synthesizer quadrature output phase noise for UHF and VHF bands is <−131dBc/Hz at 1.45 MHz offset.  相似文献   

6.
A reconfigurable multi-mode direct-conversion transmitter(TX) with integrated frequency synthesizer(FS) is presented. The TX as well as the FS is designed with a flexible architecture and frequency plan, which helps to support all the 433/868/915 MHz ISM band signals, with the reconfigurable bandwidth from 250 kHz to 2 MHz. In order to save power and chip area, only one 1.8 GHz VCO is adopted to cover the whole frequency range. All the operation modes can be regulated in real time by configuring the integrated register-bank through an SPI interface. Implemented in 180 nm CMOS, the FS achieves a frequency coverage of 320-460 MHz and 620- 920 MHz. The lowest phase noise can be -107 dBc/Hz at a 100 kHz offset and -126 dBc/Hz at a 1 MHz offset. The transmitter features a C10:2 dBm peak output power with a C9:5 dBm 1-dB-compression point and 250 kHz/500 kHz/1 MHz/2 MHz reconfigurable signal bandwidth.  相似文献   

7.
设计了一款应用于CMMB数字电视广播接收的全集成低噪声宽带频率综合器。采用三阶ΣΔ调制器小数分频器完成高精度的频率输出,使用仅一个低相位噪声的宽带VCO输出频率范围覆盖900~1 600 MHz,产生的本振信号覆盖UHF的数字电视频段(470~790 MHz)。设计中的频率综合器能在所有的频道下保证环路的稳定以及最小的环路性能偏差。测试结果表明,整个频率综合器的带内相位噪声小于-85 dBc/Hz,并且带外相位噪声在1MHz时均小于-121 dBc/Hz,总的频率综合器锁定时间小于300μs。设计在UMC 0.18μm RFCMOS工艺下实现,芯片面积小于0.6 mm2,在1.8 V电源电压的测试条件下,总功耗小于22 mW。  相似文献   

8.
针对一种基于偏移源的频率合成技术,建立了锁相环(PLL)线性模型,对相位噪声和杂散信号性能进行分析。从分析结果看,在锁相环反馈支路中使用一个偏移源将压控振荡器(VCO)输出信号下混频至一个较低的中频,从而将锁相环的环路分频比大大降低,使改善后的锁相环噪底达到-135 dBc/Hz。介绍了偏移源和主环的关键合成技术,结合工程应用设计的基于偏移源的C频段频率合成器,相位噪声偏离载波10 kHz处≤-99 dBc/Hz,偏离载波100 kHz处≤-116 dBc/Hz,杂散小于-70 dBc。  相似文献   

9.
A fully integrated CMOS phase-locked loop (PLL) which can synthesize a quadrature output frequency of 7.656 GHz is presented.The proposed PLL can be employed as a building block for an MB-OFDM UWB frequency synthesizer.To achieve fast loop settling,integer-N architecture operating with 66 MHz reference frequency and wideband QVCO are implemented.I/Q carriers are generated by two bottom-series cross-coupled LC VCOs.Realized in 0.18μm CMOS technology,this PLL consumes 16 mA current (including buffers) from a 1.5 V supply and the phase noise is-109.6 dBc/Hz at 1 MHz offset.The measured oscillation frequency shows that the QVCO has a range of 6.95 to 8.73 GHz.The core circuit occupies an area of 1×0.5 mm2.  相似文献   

10.
牟仕浩 《电子器件》2020,43(1):25-29
基于CPT(相干布局囚禁)87铷原子钟设计出输出频率为3417 MHz的锁相环频率合成器,通过ADIsimPLL仿真出最佳环路带宽,环路滤波器参数以及相位噪声等,并通过STM32对锁相环芯片进行控制。对频率合成器进行了测试,电路尺寸为40 mm×40 mm,输出信号功率范围为-4 dBm^+5 dBm可调,输出信号噪声满足要求-88.65 dBc/Hz@1 kHz,-92.31 dBc/Hz@10 kHz,-104.63 dBc/Hz@100 kHz,杂散和谐波得到抑制,设计的频率合成器能很好的应用于原子钟的射频信号源。  相似文献   

11.
A millimeter wave phase locked and frequency multiplying source is proposed in this paper. The design includes an X-band phase locked loop (PLL) frequency synthesizer as the base frequency source, and a monolithic millimeter wave frequency tripler, which is developed by using OMMIC 0.18μm pHEMT process. The PLL and the tripler are integrated in a single circuit board to make a low-cost and compact frequency source with the size of 6cm × 5cm. Measurement shows an output power of more than 4.8dBm at the frequency range from 35 to 36.7GHz. A phase noise of about -92dBc/Hz at 100kHz offset is achieved.  相似文献   

12.
A 50-GHz charge pump phase-locked loop (PLL) utilizing an LC-oscillator-based injection-locked frequency divider (ILFD) was fabricated in 0.13-mum logic CMOS process. The PLL can be locked from 45.9 to 50.5 GHz and output power level is around -10 dBm. The operating frequency range is increased by tracking the self-oscillation frequencies of the voltage-controlled oscillator (VCO) and the frequency divider. The PLL including buffers consumes 57 mW from 1.5/0.8-V supplies. The phase noise at 50 kHz, 1 MHz, and 10 MHz offset from the carrier is -63.5, -72, and -99 dBc/Hz, respectively. The PLL also outputs second-order harmonics at frequencies between 91.8 and 101 GHz. The output frequency of 101 GHz is the highest for signals locked by a PLL fabricated using the silicon integrated circuits technology.  相似文献   

13.
A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noise. A self-calibrated voltage controlled oscillator is proposed in cooperation with the automatic frequency calibration circuit, whose accurate binary search algorithm helps reduce the VCO tuning curve coverage, which reduces the VCO noise contribution at PLL output phase noise. A low noise, charge pump is also introduced to extend the tuning voltage range of the proposed VCO, which further reduces its phase noise contribution. The frequency synthesizer generates 9.75-11.5 GHz high frequency wide band local oscillator (LO) carriers. Tested 11.5 GHz LO bears a phase noise of-104 dBc/Hz at 1 MHz frequency offset. The total power dissipation of the proposed frequency synthesizer is 48 mW. The area of the proposed frequency synthesizer is 0.3 mm^2, including bias circuits and buffers.  相似文献   

14.
A zero-IF transmitter for Cognitive Radio (CR) application is presented. To effectively reduce the interference between Power Amplifier (PA) and Voltage Controlled Oscillator (VCO), two VCOs are adopted, one is 450 MHz and the other is from 1148 MHz to 1252 MHz with an 8 MHz step, so the frequency of them are different from the operational frequency of PA. The Local Oscillator (LO) of the modulator generated by mixing the signals of the two VCOs has a low phase noise of −82 dBc/Hz with an offset of 1 kHz. The measurement result of the transmitter shows that the Adjacent Channel Power Ratio (ACPR) is less than −47.5 dBc at 27 dBm output, and the Error Vector Magnitude (EVM) is less than 1.7%.  相似文献   

15.
This paper presents a front-end architecture for fully integrated 60 GHz phased array receivers. It employs LO-path beamforming using a phase controlled phase-locked loop (PC-PLL). To demonstrate the architecture a circuit is implemented featuring a two stage low noise amplifier, two cascaded active mixers, and a PC-PLL. The receiver downconverts the 60 GHz signal in two steps, using LO signals from the 20 GHz QVCO of the PLL. A differential 2nd-order harmonic is coupled from the sources of the current commutating pairs of the QVCO, feeding the LO-port of the first mixer and downconverting the 60 GHz RF signal to a 20 GHz intermediate frequency. Quadrature 20 GHz LO signals are then used in the second mixer to down-convert the IF signal to baseband. The PLL is locked to a relatively high reference frequency, 1.25 GHz, which reduces the size of the PLL loop filter and enables a compact layout. The measurements show an input return loss better than ?10 dB between 57.5 and 60.8 GHz, a 15 dB voltage gain, and a 9 dB noise figure. Two-tone measurements show ?12.5 dBm IIP3, 29 dBm IIP2, and ?24 dBm ICP1. The PC-PLL phase noise is ?105 dBc/Hz at 1 MHz offset from a 20 GHz carrier, and the phase of the received 60 GHz signal is digitally controllable with a resolution of 3.2°, covering the full 360° range with a phase error smaller than 1°. The chip consumes 80 mA from a 1.2 V supply, and measures 1,400 μm × 660 μm (900 μm × 500 μm excluding pads) including LNAs, mixers, and PC-PLL in a 90 nm RF CMOS process.  相似文献   

16.
一种可输出434/868MHz信号的Σ-Δ分数分频锁相环在0.35μmCMOS工艺中集成。该发射机系统采用直接调制锁相环分频比的方式实现FSK调制,OOK的调制则通过功率预放大器的开-关实现。为了降低芯片的成本和功耗,发射机采用了电流数字可控的压控振荡器(VCO),以及片上双端-单端转换电路,并对分频器的功耗设计进行研究。经测试表明,锁相环在868MHz载波频偏为10kHz、100kHz和3MHz处的相位噪声分别为-75dBc/Hz、-104dBc/Hz和-131dBc/Hz,其中的VCO在100kHz频偏处的相位噪声为-108dBc/Hz。在发送模式时,100kHz相邻信道上的功率与载波功率之比小于-50dB。在直流电压2.5V的工作条件下,锁相环的电流为12.5mA,包括功率预放大器和锁相环在内的发送机总面积为2mm2。  相似文献   

17.
提出了一种应用于手持式民用GNSS接收机常数环路带宽的小数频率合成器,并在0.13μm 1P6M 的CMOS工艺中实现。通过离散的工作区域,LC-VCO用简单的结构获得宽的调节范围和小的压控灵敏度。提出的杂散抑制技术来最小化由于鉴频鉴相器和电荷泵引入的相位偏移。当PLL输出频率改变或温度变化时,通过自动环路校正模块自适应调整电荷泵电流保持优化的环路带宽不变。测试结果显示,该频率合成器带内相位噪声小于-93dBc(10 kHz 频率偏移处),杂散小于-70 dBc, 环路带宽变化小于?3%;在1V的电源供电下,整个合成器(不包括本振测试buffer)消耗4.5mA电流,面积为0.5mm2。  相似文献   

18.
A novel phase-locked loop that has a loop filter consisting of only one capacitor is designed with a frequency voltage converter (FVC). Simulation and measurement results show that the proposed phase-locked loop (PLL) works stably demonstrating that the FVC works effectively as a resistor. Measurement results of the proposed PLL fabricated in a one-poly six-metal 0.18 μm CMOS process show that the phase noise is ?109 dBc/Hz at 10 MHz offset from 752.7 MHz output frequency.  相似文献   

19.
为改善宽带频率合成器的相位噪声,提出一种基于Phase-Refining技术的微波宽带频率合成器结构与一种对其相位噪声的准确分析方法。首先,根据线性传递函数与叠加原理得到该频率合成器的相位噪声解析模型,通过对振荡器实测相位噪声谱型进行曲线拟合并带入模型中来准确预测其相位噪声性能。分析表明,在级联偏置锁相环中,整个输出频率范围内都可通过将反馈分频比最小化来改善其环路带宽内的相位噪声。实验结果表明,该频率合成器的输出频率范围为2.1~5.6 GHz,频率步进为1 Hz,当输出为2.1 GHz与5.6 GHz时,在频偏10 kHz处的相位噪声分别为-114.7 dBc/Hz与-108.2 dBc/Hz,其相位噪声测试结果与分析计算结果相吻合。  相似文献   

20.
A 70∼900 MHz broadband PLL frequency synthesizer is developed for the single conversion DVB-C receiver in a standard 0.25 μm CMOS technology. The true 3-band VCO with a novel AAC (Auto-Amplitude Control) circuit provides a wideband amplitude stable output and a reliable startup without degrading the phase noise performance. A 16/17 dual-modulus prescaler with a new logic structure has increased the speed. The charge pump current is programmable for wide loop stabilization and phase noise optimization. The measured results show that the locked range of the frequency synthesizer is 70∼900 MHz. The worst phase noise at 1 k/10 k/100 k/1 MHz offset frequency is ordinal −65/−85/−112/−128 dBc/Hz and the spur at reference frequency is lower than −90 dBc.The frequency synthesizer chip dissipates only 16.2 mA from a 3.3 V supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号