首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以三聚氰胺改性腰果酚基阻燃多元醇和异氰酸酯为主要原料,采用环戊烷为发泡剂,添加无卤阻燃膨胀型阻燃剂石墨(EG)、匀泡剂等制备无卤阻燃生物基硬质聚氨酯泡沫塑料。探讨结构阻燃型聚醚多元醇、阻燃剂的添加对生物基硬质聚氨酯泡沫的热性能、燃烧性能和力学性能的影响。结果表明,随着阻燃剂的增加,导热系数和固化时间增加;添加相同阻燃剂的泡沫样品其阻燃性能随着添加量的增加而增加,EG在提高氧指数方面优于聚磷酸铵(APP)和乙基膦酸二乙酯(DEEP),固体阻燃剂APP和EG在增加力学性能、热稳定性方面较液体阻燃剂DEEP效果好。  相似文献   

2.
APP/Sb2O3复合阻燃剂对聚乙烯性能的影响   总被引:1,自引:0,他引:1  
以低密度聚乙烯(LDPE)和线性低密度聚乙烯(LLDPE)二元共混体系为基础树脂,膨胀型阻燃剂聚磷酸铵(APP)与三氧化二锑(Sb2O3)组成无卤膨胀型阻燃体系,研究APP/Sb2O3复合阻燃剂对复合阻燃体系阻燃性能的影响.结果表明,LDPE/LLDPE为100份,复合阻燃体系中APP/Sb2O3阻燃剂总添加量不低于40份时可达到FV-0阻燃级别;复合阻燃体系的力学性能、流动性能和加工性能均随阻燃剂含量的增加而变差.  相似文献   

3.
应用有机硅阻燃剂(FRX-210)及FRX-210与聚磷酸铵(APP)或有机磷氮阻燃剂(PNP)的复合阻燃剂制备了阻燃木塑复合材料,研究了阻燃剂对PE基木塑复合材料的阻燃性能及力学性能的影响。结果表明,FRX-210使木塑复合材料的极限氧指数(LOI)提高,且随FRX-210添加量的增加而增加,添加40份FRX-210,使木塑材料的LOI提高了34%。FRX-210使木塑复合材料的热、烟、CO、CO_2释放量显著降低,火灾性能指数提高,且对材料的力学性能的影响较小。FRX-210与APP及PNP对PE基木塑复合材料具有阻燃协效作用,且FRX-210与APP复配后的阻燃效果明显优于与PNP复配的效果。  相似文献   

4.
将无机阻燃剂聚磷酸铵(APP)和有机阻燃剂磷酸三氯乙酯(TCEP)复配,制备了TCEP/APP阻燃聚氨酯泡沫塑料,并对其耐燃性、力学性能和热稳定性进行了分析。结果表明:阻燃剂添加量为30%时,当m(TCEP)∶m(APP)=1∶3时,TCEP/APP的阻燃效果最佳,此时聚氨酯泡沫塑料的极限氧指数为25.7%,且残炭率增加至37.2%,聚氨酯泡沫塑料的压缩强度和冲击强度分别为0.158 MPa和0.109 kJ/m~2。  相似文献   

5.
以膨胀石墨(EG)分别和三聚氰胺(MA)或磷酸三乙酯(TEP)组成2种无卤复合型阻燃剂,用于聚氨酯硬泡的阻燃。结果表明,每100份聚醚多元醇,当EG用量均为10份,第二种阻燃剂MA或TEP添加量为15~25份时,所得的聚氨酯硬泡的氧指数可提高至27.0~29.7,说明复合阻燃剂使聚氨酯硬泡的阻燃性能明显提高;密度约为45 kg/m3的阻燃聚氨酯硬泡的压缩强度在192~252 k Pa范围,与未阻燃聚氨酯硬泡相比有所下降;导热系数在21.2~22.5 m W/(m·K)范围。  相似文献   

6.
硬质聚氨酯泡沫(PUR)具有优异的保温性能、防水性能以及化学稳定性,但由于其潜在的火灾危险性,严重影响了它的使用范围。通过添加阻燃剂改善PUR的阻燃性能得到了广泛的关注,但单一的阻燃剂对阻燃性能的提升较小。以密胺树脂和氢氧化铝分别作为包覆材料对聚磷酸铵(APP)进行包覆,得到三聚氰胺甲醛树脂微胶囊化APP(MF-APP)和氢氧化铝微胶囊化APP(ATH-APP)。分别以MF-APP、ATH-APP以及未经包覆的APP作为白料,以多异氰酸酯为黑料,采用一步法制得全水发泡阻燃聚氨酯硬泡(RPUF)。研究APP、MF-APP、ATH-APP的表面形态及三种阻燃剂对聚氨酯硬泡阻燃性、热稳定性的影响,并将结果进行对比。研究表明,添加的阻燃剂质量分数为25%时,聚氨酯硬泡的极限氧指数达到最大值,添加MF-APP的RPUF极限氧指数最大为26.3%,最终成炭量约为12%,相较于ATH-APP与APP的成炭量有所提高。实验证明三聚氰胺甲醛树脂包覆聚磷酸铵能有效提高阻燃聚氨酯硬泡的阻燃性能和成炭量,提高了阻燃聚氨酯硬泡的热稳定性。  相似文献   

7.
利用自制的三嗪环低聚物(PMPT)及复合阻燃剂制备阻燃聚丙烯材料,研究复合阻燃剂APP/PER/PMPT用量对阻燃PP力学性能、热分解性能的影响,并初步推测阻燃剂PMPT的阻燃机理.结果表明:加入复合阻燃剂使阻燃PP的力学性能有所下降.TG曲线显示:复合阻燃剂使阻燃PP的热分解速率减小,热稳定性增加.复合阻燃剂APP/PER/PMPT使PP的氧指数(LOI)增加62%.APP/PER/PMPTF复合阻燃剂主要在凝聚相起到阻燃作用.  相似文献   

8.
以聚醚多元醇PPG2000和N330、二苯基甲烷二异氰酸酯(MDI-50)为原料合成预聚体组分,以多元醇PPG2000和N330、扩链剂3,3′-二氯-4,4′-二氨基二苯基甲烷(MOCA)以及乙二醇(EG)配制多元醇组分。添加阻燃剂,通过半预聚体法合成聚氨酯弹性体(PUE)。通过改变阻燃剂的种类,研究其对PUE性能的影响。研究发现,阻燃剂能够明显改善PUE的阻燃性能,但是降低了PUE的拉伸强度和撕裂强度;根据锥形量热仪的分析,改性聚磷酸铵/季戊四醇/三聚氰胺(APP/PER/MA)作为复配阻燃剂可以有效降低PUE的生烟速率、热释放速率和总热释放量;阻燃剂的加入在一定程度上会降低材料的体积电阻率。  相似文献   

9.
以氢溴酸三聚氰胺盐(MHB)、聚磷酸铵(APP)、阻燃增效协同剂2、3-二甲基-2、3-二苯基丁烷( DMDPB )3种物质为原料复配成一种新型磷溴氮复合阻燃剂,将不同复配比例的复合阻燃剂添加到聚丙烯(PP)中,对阻燃PP材料的阻燃性能、力学性能及熔体流动速率进行测试,探讨3种物质的最佳复配比;并研究了该复合阻燃剂的添加量对材料阻燃性能的影响。结果表明,当MHB:APP:DMDPB的配比为10:10:1时,为最佳复配比;当磷氮溴复合阻燃剂的添加量为2.0 %(质量分数,下同)时,其极限氧指数值为30.8 %,燃烧等级为UL 94 V-1。  相似文献   

10.
采用聚醚多元醇、多亚甲基多苯基多异氰酸酯(PAPI)、泡沫稳定剂、催化剂、高效阻燃剂、发泡剂、含溴环氧树脂等原料通过一步法制备了聚氨酯硬质泡沫材料,研究了不同含溴环氧树脂添加比例的聚氨酯硬质泡沫材料的压缩强度和阻燃指数。结果表明,随着含溴环氧树脂添加量的增加,压缩强度出现先增加后减少的趋势。在含溴环氧树脂添加量占白料总质量10%时,压缩性能最佳;随着含溴环氧树脂添加量的增加,聚氨酯硬泡的极限氧指数呈上升趋势;高效阻燃剂用量可以使改性聚氨酯硬泡极限氧指数得到显著增加,达到30%以上。  相似文献   

11.
张帅  陈建钧 《无机盐工业》2020,52(12):46-49
阻燃剂能够增强聚丙烯(PP)的阻燃性能,但也会降低其力学性能,因此对阻燃剂进行改性以改善聚丙烯的力学性能显得至关重要。以传统的膨胀型阻燃剂(IFR)[由聚磷酸铵(APP)、季戊四醇(PER)、三聚氰胺(MA)组成]为PP阻燃。在合成APP过程中引入有机蒙脱土(OMt)。APP围绕OMt形成,剥离OMt使其能够较好地分散在阻燃剂中。为使OMt更好地分散在阻燃剂中,在磷酸氢二铵(DAP)、尿素(UREA)溶液中加入OMt,之后对溶液进行超声处理,蒸干后形成DAP-UREA-OMt与五氧化二磷反应生成APP。在PP中添加改性阻燃剂,有助于PP材料阻燃性能的提升与减缓力学性能的下降。当阻燃剂添加量为30%(阻燃剂添加量占总质量的质量分数)时,PP/IFRAPP/OMt复合材料的氧指数达到29.8%,通过V-0测试,拉伸强度为22.0 MPa,高出传统方法0.7 MPa。  相似文献   

12.
分别采用聚磷酸铵(APP)、氢氧化铝(ATH)和APP/ATH复配阻燃剂填充甲基乙烯基硅橡胶,制成阻燃型硅橡胶。研究了APP、ATH和APP/ATH用量及复配方式对硅橡胶阻燃性能、介电性能和力学性能的影响。结果表明,硅橡胶的阻燃性能随APP、ATH用量的增加而增加,同等填充量下,APP/ATH复配阻燃剂填充硅橡胶的阻燃性能比单一APP或ATH填充硅橡胶更佳;随着APP/ATH复配阻燃剂用量的增加,硅橡胶的拉伸强度与拉断伸长率降低,邵尔A硬度、介电常数和介质损耗因数增加。当100份硅橡胶中加入80份APP/ATH复配阻燃剂(APP与ATH的质量比为3∶2)时,硅橡胶的氧指数达44%,拉伸强度、拉断伸长率、邵尔A硬度、介电常数及介质损耗因数分别为6.8 MPa、438%、62度、3.92、249%。  相似文献   

13.
利用微胶囊化技术合成了新型磷氮体系无卤膨胀型阻燃剂IFR,用于聚丙烯(PP)阻燃改性。考察了阻燃剂IFR中聚磷酸铵(APP)用不饱和聚酯树脂(UPR)的微胶囊包覆效果以及UPR的用量对阻燃PP的阻燃性、耐水性、力学性能和成炭性等的影响。结果发现随着包覆层UPR用量的增加,阻燃PP的氧指数略微增大,耐水性有所改变,力学性能下降变化幅度不大,成炭性变弱。但当UPR包覆量为5%时,对PP的阻燃、耐水以及成炭效果都比较良好。  相似文献   

14.
采用聚磷酸铵(APP)对高密度聚乙烯(HDPE)进行填充改性,制备出APP不同含量的HDPE阻燃复合材料。通过水平-垂直燃烧仪与氧指数测定仪测试材料的阻燃性能,热重分析实验与复合材料总体热稳定性作用(OSE)评价材料的热稳定性能,研究材料总体热稳定性作用与阻燃性能间的关系。结果表明:OSE法能较好地衡量添加剂用量对复合材料热稳定性能影响情况,增加APP填充量有利于提高HDPE复合材料总体热稳定性与阻燃性能,提高HDPE复合材料的总体热稳定性有利于改善其阻燃性能。  相似文献   

15.
选取聚磷酸铵(APP)/季戊四醇(PER)/三聚氰胺(MEL)组成膨胀阻燃体系,采用马来酸酐接枝聚丙烯(MAH-g-PP)为增容剂,研究了三种膨胀阻燃成分及MAH-g-PP的含量的变化对阻燃聚丙烯力学性能的影响。研究结果表明:随着MAH-g-PP含量的增加,阻燃聚丙烯的力学性能有所改善,在10%以前提高较大,在10%以后增幅趋缓。  相似文献   

16.
以聚磷酸铵(APP)、三聚氰胺(MA)复配制得膨胀型阻燃剂(IFR), 通过密炼机共混制备了阻燃聚丁二烯丁二醇酯(PBS)/淀粉复合材料(PBSS/IFR),并研究了各组分配比及含量对复合材料阻燃性能、热稳定性及力学性能的影响。结果表明,甘油糊化淀粉含量为20 %(质量分数,下同)、甘油/淀粉质量比为3∶1、IFR含量为24 %、APP/MA质量比为5∶1时,复合材料的极限氧指数达到34.5 %;加入IFR后,阻燃复合材料的阻燃性能和热稳定性均提高。  相似文献   

17.
利用锥形量热仪(CONE)和热失重分析(TG)研究了化学膨胀阻燃剂(IFR)、氢氧化铝/红磷(Al(OH)3/P)及二者复合阻燃SBR的阻燃性能及热失重行为。结果表明,阻燃剂用量为40份,聚磷酸铵(APP)与季戊四醇(PER)质量比为3∶1时,SBR/APP/PER的热释放速率及生烟速率均大幅度下降,阻燃效果较好;Al(OH)3与P质量比为26∶14时,可有效降低SBR/Al(OH)3/P的热释放速率,但生烟速率较大;将APP/PER∶Al(OH)3/P=1∶1复配,SBR/IFR/Al(OH)3/P的热释放速率和生烟速率没有进一步改善,协同效应不明显。热失重研究表明,空气气氛下,试样SBR/IFR/Al(OH)3/P在300~500℃时,Al(OH)3/P反应使得SBR分解速度下降;在500~800℃时,APP与PER形成炭层,有效地起到隔热隔氧的作用,从而抑制炭黑的分解;两者复合使用,使阻燃SBR分解速度降低,热稳定性提高。  相似文献   

18.
采用密胺包覆聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)作为膨胀型阻燃剂(IFR)对不饱和树脂(UP)进行改性,研究了APP、PER和MEL不同复配比例及用量对不饱和树脂基复合材料阻燃性能和力学性能的影响。基于IFR最佳用量,以二乙基次磷酸铝(ADP)为协效剂,研究了ADP用量对IFR/UP阻燃复合材料阻燃性能、力学性能及热稳定性的影响。结果表明,当APP∶PER∶MEL复配比例为4∶1∶1,IFR添加量为15 %(质量分数,下同)时,复合材料综合性能最佳,其极限氧指数为27.4 %,UL 94垂直燃烧达到V?1等级,弯曲强度和冲击韧性分别为100.3 MPa和6.3 kJ/m2;ADP的引入能够进一步提高IFR/UP复合材料阻燃性能,且随着ADP质量分数的增加而增强;当ADP质量分数为2 %时,IFR?ADP/UP复合材料极限氧指数为28.5 %并达到V?0阻燃等级,弯曲强度和冲击韧性分别为110 MPa和7.8 kJ/m2,与IFR/UP复合材料相比,分别提高了9.7 %和23.8 %;ADP能够促进IFR/UP复合材料表面成炭,缓解基体的热降解。  相似文献   

19.
聚磷酸铵膨胀型阻燃剂在聚合物中应用的研究进展   总被引:3,自引:0,他引:3  
何小芳  张崇  代鑫  胡平  樊斌斌 《塑料助剂》2011,(2):14-17,38
综述了聚磷酸铵膨胀型阻燃剂的阻燃机理,介绍了该阻燃剂对聚丙烯(PP)、聚乙烯(PE)、ABS树脂、环氧树脂(EP)、尼龙(PA)、聚甲醛(POM)等材料燃烧性能的影响,并对该阻燃剂在阻燃方面的发展趋势、应用前景作了展望.  相似文献   

20.
橡胶表面用无卤协同阻燃聚氨酯脲的性能研究   总被引:1,自引:0,他引:1  
以HDI三聚体/IPDI预聚体为固化剂,聚天门冬氨酸酯为扩链剂,烷羟基硅油/氮磷羟基阻燃聚醚POP(Si-N/P)与聚磷酸铵(APP)/季戊四醇(PER)为协同阻燃剂,设计了橡胶表面用无卤协同阻燃聚氨酯脲弹性体。讨论了协同阻燃剂用量对体系阻燃与机械性能的影响。结果表明,无卤协同阻燃聚氨酯脲弹性体具有较好的阻燃性能和机械性能,当Si—N/P质量分数为20%,APP/PER质量分数为30%时,其极限氧指数(LOI)从18提高到33,拉伸强度5.2MPa,断裂伸长率235%.邵A硬度57,可实现与橡胶基材匹配的协同运动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号