首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
This paper reports that the multi-walled carbon nanotubes(MWCNT)/nylon-6 (PA6) nanocomposites with different MWCNT loadingshave been prepared by a simple melt-compounding method. Theelectrical, dielectric, and surface wetting properties of theCNT/PA6 composites have been studied. The temperature dependence ofthe conductivity of the CNT/PA6 composite with 10.0 wt{\%} CNTloading ($\sigma _{\rm RT} \sim 10^{-4}$ S/cm) are measured, andafterwards a charge-energy-limited tunnelling model (ln $\sigma (T)\sim T^{-1/2})$ is found. With increasing CNT weight percentage from0.0 to 10.0 wt%, the dielectric constant of the CNT/PA6composites enhances and the dielectric loss tangent increases twoorders of magnitude. In addition, water contact angles of theCNT/PA6 composites increase and the composites with CNT loadinglarger than 2.0 wt%even become hydrophobic. The obtainedresults indicate that the electrical and surface properties of thecomposites have been significantly enhanced by the embedded carbonnanotubes.  相似文献   

2.
原油乳状液对原油的长距离输运具有重要影响,乳状液的油、水状态及相互作用机制还需新理论和新方法获得新认识,基于有效介质理论,本文研究了原油乳状液太赫兹光谱响应特征.通过太赫兹时域光谱系统测试得到了含水率为0~28%的原油乳状液的太赫兹时域光谱,结合傅里叶变换计算了吸收系数和介电常数等光学参数,同一频率下吸收系数等光学参数随含水率增加而增大.样品的实际介电常数与Bruggeman理论计算的介电常数一致,最大误差率低于3%,说明含水率较小时,水分散在原油中,微粒间的距离较大,微粒间的相互作用力较小,随着含水率增加,水相和油相混合分布,微粒间的距离会变小,微粒的相互作用力会变大.因此,有效介质理论对乳状液的太赫兹光谱研究具有重要意义.  相似文献   

3.
M. Madani 《Molecular physics》2013,111(7):849-857
This paper reports the results of studies on the thermal and electrical properties of gamma radiation cured composites based on ethylene propylene dieyne rubber (EPDM) reinforced with different concentrations of micro- and nano-silica. The effect of gamma irradiation in the presence of ethylene glycol dimethacrylate (EGDM) as radiation sensitizer on melt flow properties of EPDM was also studied. Thermogravimetric studies of the composites show that the degradation of vulcanizates is controlled mainly by the silica type and its concentration. Increasing the amount of micro- or nano-silica in the vulcanizate decreases the maximum rate of decomposition of the major degradation step compared with that of the unfilled-cured one. The micro- and nano-composites exhibited remarkable heat resistance properties compared with that of the pure EPDM as the filler dispersion of silica inhibited the thermal degradation of the polymeric matrix, which led to the micro and nano-composites showing great improvement in thermal stability. A considerable change in decomposition rate is observed by increasing filler loading from 10 to 39 phr. The dielectric properties of such composites are affected by the silica type and concentration. The dielectric constant and ac-conductivity for all composites were found to increase with increasing silica loading, which is mainly due to the interfacial polarization. The ac-conductivity values of silica/EPDM composites exhibit a strong frequency dependence with both fillers used. The conductance and dielectric constant values have been fitted using a conduction model for all samples.  相似文献   

4.
The dielectric behavior of polyvinylidene fluoride/nanoquasicrystalline Al–Cu–Fe composites has been investigated over a broad frequency range. High effective dielectric constant (3800) at 100 Hz is observed near the percolation threshold. The dielectric behavior has been explained on the basis of boundary layer capacitor effect, Maxwell Wagner Sillars interfacial polarization and percolation theory while the dielectric anomalies are attributed to process of fabrication leading to thick insulating layer between the filler particles forming a gap in effective tunneling range of two filler particles, inhibiting the probability of higher order tunneling. The mechanical/electronic properties of these composites will make them suitable for multifunctional applications.  相似文献   

5.
The dependence of the dielectric properties of micro- (m-) and nano- (n-) silver (Ag)/poly(vinylidene fluoride) (PVDF) composites on the Ag particle size was determined. The magnitude of dielectric constant and conductivity for the PVDF/n-Ag composites was much higher than that of the PVDF/m-Ag composites at the same Ag volume loading. Our results suggest that the percolative behaviors were quite different for the m- and n-systems owing to the Ag particle size effect. The dielectric property depends on the synergistic effects of interfacial area, interparticle distance, and interfacial adhesion, all of which are highly dependent on the Ag particle size. The increased interfacial area, reduced interparticle distance, and improved interfacial adhesion contributed to the better dielectric properties of the PVDF/n-Ag composites.  相似文献   

6.
The electromagnetic and microwave absorption properties of the Z-type Ba-ferrite/polymer composites were investigated. The results showed that particle size of the Ba-ferrite fillers has a significant influence on the effective properties of the two-phase composites. The relative dielectric constant and initial permeability of such composites are about 95 and 5.2 at high frequency under certain combination of ferrite fillers with different particle size, respectively. Microwave absorption properties of the composites are simultaneously influenced due to the strong correlation between reflection loss and electromagnetic parameters of the ferrite/polymer composites.  相似文献   

7.
TiC/PVDF nanocomposite is prepared via simple blending and hot pressing route. Percolation theory was employed to explain the dielectric behavior of the TiC/PVDF composites. The dependence of the dielectric properties of the composite on both volume fraction of the filler and frequency is investigated. High dielectric constant (? = 540) and low loss (tan δ = 0.48) of the composites at 100 Hz have been observed near the percolation threshold (0.12). The composites show a weak frequency dependence towards the high frequency range (10–100 kHz), regardless of the TiC content. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The preparation of polyaniline (PAni) was carried out by the oxidative emulsion polymerization of aniline and the semi-conducting composites were prepared by mixing it with a polyolefinic thermoplastic elastomer ethylene 1-octene copolymer (EN). Different electrical properties and electromagnetic interference shielding efficiency (EMI SE) of these composites were measured. The results revealed that the incorporation of PAni in EN increases the conductivity, dielectric constant, dielectric loss and EMI SE. These composites exhibit pressure dependent dielectric properties and may act as pressure sensor. There are increase in AC conductivity and decrease in dielectric constant with the increase in applied pressure on composites. A model correlation between EMI SE and AC conductivity at same frequency for the composites having maximum 40% of PAni was obtained through extrapolation and linear regression analysis, which shows that EMI SE has linear relationship with AC conductivity. Because of their semi-conductive behavior these composites can find application as antistatic materials and electromagnetic interference (EMI) shielding material.  相似文献   

9.
《Composite Interfaces》2013,20(7-9):763-786
The dielectric properties, such as dielectric constant, volume resistivity and dielectric loss factor, of sisal/coir hybrid fibre reinforced natural rubber composites have been studied as a function of fibre loading, fibre ratio, frequency, chemical modification of fibres and the presence of a bonding agent. The dielectric constant values have been found to be higher for fibre filled systems than pure natural rubber. This has been attributed to the polarization exerted by the incorporation of fibres into the matrix. Dielectric constant values were observed to be decreased with increase in frequency due to the decreased interfacial and orientation polarization at higher frequencies. Whereas dielectric constant increases with fibre loading because of the increment in number of polar groups after the addition of hydrophilic lignocellulosic fibres. The volume resistivity of the composites was found to be decreased with fibre loading and a percolation threshold has been obtained at 15.6% volume of fibres. Fibre treatment, such as alkali, acetylation, benzoylation, peroxide and permanganate, were carried out to improve the adhesion between fibres and matrix. The dielectric constant values were lower for systems consisting of fibres subjected to chemical treatments due to the increased hydrophobicity of fibres. The addition of a two-component dry bonding agent consisting of hexamethylene tetramine and resorcinol, used for the improvement of interfacial adhesion between the matrix and fibres, reduced the dielectric constant of the composites. When the weight percentage of sisal fibre was increased in the total fibre content of the hybrid composites, the dielectric constant was found to increase. The added fibres and different chemical treatments for them increased the dielectric dissipation factor. A dielectric relaxation has been observed at a frequency of 5 MHz.  相似文献   

10.
Polymer/highly-conductive carbon composites are used as dielectrics. However, a high dielectric loss is induced by leakage current. In this study, ternary polymer composites with hydroxyfullerene and diamond were fabricated. Ternary composites exhibited more promising dielectric traits compared with polymer/hydroxyfullerene composites. A high dielectric constant was achieved using polar hydroxyfullerene. A significantly reduced dielectric loss was achieved owing to insulative diamond. Polymer/hydroxyfullerene interaction and branching of leakage current were studied. The best ternary composite showed a dielectric constant of ∼26 and dielectric loss of ∼0.21 at 20 Hz. This work may enable the large-scale fabrication of advanced dielectrics.  相似文献   

11.
Polymer/conductive ceramic composites with high dielectric constant have become research hotspot of dielectric capacitor materials. However, the conductivity and dielectric loss increase when high dielectric constant is achieved. In order to reconcile high dielectric constant and low dielectric loss, in this study, poly (vinylidene fluoride) (PVDF)/chromium carbide (Cr2C3)/montmorillonite (MMT) ternary composite films were prepared by solution cast. Dielectric response based on interfacial polarization was improved and dielectric constant of composites was increased. MMT ceramic was used to suppress interface leakage current. Compared with PVDF/Cr2C3 composites, the conductivity and dielectric loss of ternary composites were reduced.  相似文献   

12.
Our studies comprise electrical dielectric and magnetoelectric properties of CoFe2O4 (CFO) and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 [PMN-PT] magnetoelectric composites. The individual phases were prepared by conventional ceramic method. The particulate composites of ferrite and ferroelectric phases were prepared in ferroelectric rich region. Presence of both the phases in the composites was confirmed using X-ray diffraction techniques. The scanning electron microscopic images recorded in backscattered mode were used to study the microstructure of composites. Lattice constant, dielectric constant, electrical resistivity, ferroelectric, and magnetic properties of individual as well as particulate composites were studied. Further the bi-layer composites were made using the discs obtained from the powders of individual phases where hot press technique was employed to obtain disc of individual phases. CFO phase used in bi-layer composites was obtained using chemical co-precipitation technique. Magnetoelectric (ME) measurements were carried out on both, particulate and layered magnetoelectric composites. Comparison of ME signal obtained from particulate and layered composites revealed that the layered composites gives superior magnetoelectric signal. ME data obtained for layered composites show good agreement with the theoretical model.  相似文献   

13.
The dielectric properties of nano-particles of ZnS have been studied over a temperature range from 300 to 525 K. The dielectric constant, dielectric loss and ac conductivity of the samples are larger than those of bulk ZnS crystals. Dielectric properties of composites consisting of nano-particles of Ag of different concentrations dispersed in nano-particles of ZnS have also been studied.  相似文献   

14.
Novel hybridized multi-walled carbon nanotubes (CNTs), consisting of a unique hyperbranched polyaniline (HSiPA) and CNTs, were prepared. The interaction between HSiPA and CNTs was investigated by many techniques, and results show that there are strong ππ and electrostatic interactions between HSiPA and CNTs, so HSiPA can stack firmly onto the surface of CNTs to form a coating. Based on this, a new kind of ternary composites made up of hybridized CNTs and epoxy (EP) resin was prepared, the influence of the ratio of HSiPA to CNTs on the structure and properties of the HSiPA/CNT/EP composites was intensively studied. The percolation threshold of HSiPA/CNT/EP composites is very low (1.26 wt%); besides, with a suitable ratio of HSiPA to CNTs, the HSiPA/CNT/EP composite has much higher dielectric constant and lower dielectric loss than the CNT/EP composite with the same loading of CNTs. When the ratio of HSiPA to CNTs is 0.5:1, the dielectric constant and loss at 100 Hz of the resultant HSiPA/CNT0.5/EP composite are 711 and 1.53, about 7.1 and 4.3 × 10?3 times the corresponding value of CNT0.5/EP composite, respectively. In addition, compared with traditional CNT/EP composites, the HSiPA/CNT0.5/EP composites have different equivalent circuit models. These attractive results are attributed to unique structure of hybridized CNTs, and thus leading to greatly different structures between the CNT0.5/EP and HSiPA/CNT0.5/EP composites. This investigation reported herein suggests a new approach to prepare new CNTs and related composites with controllable dielectric properties.  相似文献   

15.
The polyvinyl alcohol (PVA)/barium zirconium titanate Ba[Zr0.1Ti0.9]O3 (BZT) polymer–ceramic composites with different volume percentage are obtained from solution mixing and hot-pressing method. Their structural and electrical properties are characterized by X-ray diffraction (XRD), Rietveld refinement, cluster modeling, scanning electron microscope and dielectric study. XRD patterns of PVA/BZT polymer–ceramics composite (with 50% volume fractions) indicate no obvious differences than the XRD patterns of pure BZT which shows that the crystal structure is still stable in the composite. The scanning electron micrograph indicates that the BZT ceramic is dispersed homogeneously in the polymer matrix without agglomeration. The dielectric permittivity (εr) and the dielectric loss (tan δ) of the composites increase with the increase of the volume fraction of BZT ceramic. Theoretical models are employed to rationalize the dielectric behavior of the polymer composites. The dielectric properties of the composites display good stability within a wide range of temperature and frequency. The excellent dielectric properties of these polymer–ceramic composites indicate that the BZT/PVA composites can be a candidate for embedded capacitors.  相似文献   

16.
Dendrite-shaped PbS has been successfully synthesized using hydrothermal method on a large scale. The formation of dendrite-shaped PbS was confirmed by scanning electron microscopy (SEM). A detailed study of variations in dielectric properties on frequency and temperature shows that composites of PVDF and dendrite-shaped PbS have significantly higher dielectric constant than PVDF/PbS nanoparticles (NP) nanocomposites due to low percolation threshold.  相似文献   

17.
The variation in dielectric properties of water with the addition of ionic salts have been measured using automated frequency domain experimental microwave C-band. The dielectric properties, that is dielectric constant (ε′) and dielectric loss (ε″) of two electrolyte solutions for various concentrations have been measured at 5-GHz frequency at room temperature. It has been observed that for concentration between 0.2 to 1.0 mole the dielectric constant of water is smaller and some larger than that of pure water and dielectric loss increases with increasing concentration of these salts. It has been also observed that the variation in dielectric loss is different, though the ionic concentration of the two salts are equal.  相似文献   

18.
曾涛  董显林  毛朝梁  梁瑞虹  杨洪 《物理学报》2006,55(6):3073-3079
采用添加造孔剂的方法制备多孔锆钛酸铅(PZT)陶瓷,并研究了孔隙率和晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理.研究表明:孔隙率的增加降低了多孔PZT陶瓷的介电常数,提高了静水压优值,并证明在一定条件下孔隙率与介电常数关系可由Okazaki经验公式及Banno模型预测;晶粒尺寸增加,多孔PZT陶瓷的介电常数、压电系数和优值增加,并可用Okazaki空间电荷理论解释晶粒尺寸对试样介电和压电性能的影响.对于添加重量百分数为10%造孔剂的多孔PZT陶瓷,当烧结温度为1300℃时,孔隙率为34%,d关键词: 多孔PZT陶瓷 静水压优值 压电性能 介电性能  相似文献   

19.
基于分数阶微积分理论和介电分数单元,建立了分数Poynting-Thomson模型,给出了复介电常数的表达式.利用遗传算法结合共轭梯度法,分别求得复介电常数实部和虚部的最优参数,并对E7(主要是氰基联苯化合物)复介电常数实部和虚部的实验数据进行拟合.结果表明能对E7的复介电常数给出很好的描述.另外,由于该法对研究聚合物的复介电常数有广泛的适用性,故该法对研究与E7性质相差很大的聚合物同样适用.  相似文献   

20.
CaCu3Ti4O12 (CCTO)–silicone resin composites with various CCTO volume fractions were prepared. Relatively high dielectric constant (ε=119) and low loss (tanδ=0.35) of the composites with CCTO volume fraction of 0.9 were observed. Two theoretical models were employed to predict the dielectric constant of these composites; the dielectric constant obtained via the Maxwell–Garnett model was in close agreement with the experimental data. The dielectric constant of CCTO–silicone resin composites showed a weak frequency dependence at the measuring frequency range and the loss tangent apparently decreases with increase in frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号