首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
An in situ optical microspectroscopy investigation of the growth and oxidation of silver nanoparticles (NPs) embedded in SiO2 thin films deposited on soda-lime glass has been conducted in real time during thermal processing in air. Variation of Ag NP size is followed by fitting of surface plasmon resonance (SPR) with spectra calculated by Mie theory, and analysed concurrently with the time evolution of SPR peak intensity. The NP transformations appeared to be temperature and time dependent. Silver NPs were indicated to grow at relatively high temperatures (e.g. 600 °C) due to Ostwald ripening, followed by a plateau and a gradual decrease in size resulting in SPR vanishing due to oxidation. The three phases were well separated in time. Oxidation appeared dominant at lower temperatures (e.g. 400 °C) as indicated by a continuous decrease in Ag particle size. The product of Ag NP oxidation was revealed by photoluminescence spectroscopy as single Ag+ ions. Furthermore, the data indicated that: (i) Ag+ ions are formed during heat treatment under an Ag/Ag+ redox equilibrium; (ii) the ions diffuse from the SiO2 matrix towards the soda-lime substrate where they stabilize; and (iii) the continuous removal of these ions from the matrix is necessary in order for the equilibrium to be displaced towards oxidation.  相似文献   

2.
A fast, simple procedure is described for obtaining an assembly of silver sulfide nanoparticles (Ag(2)S NPs) on a glass substrate through reaction of a template of an assembled layer of silver nanoparticles (Ag NPs) with hydrogen sulfide (H(2)S) gas. The Ag NP template was prepared by assembling a monolayer of spherical Ag NPs (mean diameter of 7.4?nm) on a polyethylenimine-treated glass substrate. Exposure to pure H(2)S for 10?min converted the Ag NPs of the template to Ag(2)S NPs. The resulting Ag(2)S NP assembly, which retains the template nanostructure and particle distribution, was characterized by optical absorption spectroscopy, atomic force microscopy, transmission electron microscopy (TEM), scanning high resolution TEM, energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The Ag(2)S NPs have a crystal structure of monoclinic acanthite, and while they retained the spherical shape of the original Ag NPs, their mean particle size increased to 8.4?nm due to changes to the crystal structure when the Ag NPs are converted into Ag(2)S NPs. The measured optical absorption edge of the Ag(2)S NP assembly indicated an indirect interband transition with a band gap energy of 1.71?eV. The Ag(2)S NP assembly absorbed light with wavelengths below 725?nm, and the absorbance increased monotonically toward the UV region.  相似文献   

3.
The poor adhesion of gold nanoparticles (NPs) to glass has been a known obstacle to studies and applications of NP-based systems, such as glass/Au-NP optical devices. Here we present a simple scheme for obtaining stable localized surface plasmon resonance (LSPR) transducers based on Au NP films immobilized on silanized glass and annealed. The procedure includes high-temperature annealing of the Au NP film, leading to partial embedding in the glass substrate and stabilization of the morphology and optical properties. The method is demonstrated using citrate-stabilized Au NPs, 20 and 63 nm mean diameter, immobilized electrostatically on glass microscope cover slides precoated with an aminosilane monolayer. Partial thermal embedding of the Au NPs in the glass occurs at temperatures in the vicinity of the glass transition temperature of the substrate. Upon annealing in air the Au NPs gradually settle into the glass and become encircled by a glass rim. In situ transmission UV-vis spectroscopy carried out during the annealing in a specially designed optical oven shows three regions: The most pronounced change of the surface plasmon (SP) band shape occurs in the first ca. 15 min of annealing; this is followed by a blue-shift of the SP band maximum (up to ca. 5 h), after which a steady red-shift of the SP band is observed (up to ca. 70 h, when the experiment was terminated). The development of the SP extinction spectrum was correlated to changes in the system structure, including thermal modification of the NP film morphology and embedding in the glass. The partially embedded Au NP films pass successfully the adhesive-tape test, while their morphology and optical response are stable toward immersion in solvents, drying, and thiol self-assembly. The enhanced adhesion is attributed to the metal NP embedding and rim formation. The stabilized NP films display a refractive index sensitivity (RIS) of 34-48 nm/RIU and 0.1-0.4 abs.u./RIU in SP band shift and extinction change, respectively. The RIS can be improved significantly by electroless deposition of Au on the embedded NPs, while the system stability is maintained. The method presented provides a simple route to obtaining stable Au NP film transducers.  相似文献   

4.
Hu J  Liu P  Chen L 《Applied optics》2012,51(9):1357-1360
We investigated the optical absorption spectra of Ag-, Cu-, and Au-mesoporous SiO(2) systems, respectively, after the samples were heated in dry air and in wet air. As expected, dry air at high temperature leads to the surface plasmon resonance (SPR) disappearance of Ag-SiO(2) and Cu-SiO(2) and a slight SPR increase of Au-SiO(2). However, a small amount of water vapor in air induces a strong SPR appearance for both Ag- and Au-containing samples, indicating that water vapor plays an abnormal reduction effect on both Ag and Au species in mesoporous SiO(2), despite the fact that it usually plays an oxidation role on Pt-group metals, but it cannot induce the SPR appearance for the Cu-containing sample under the same condition.  相似文献   

5.
We quantitatively studied, using X-ray photoelectron spectroscopy (XPS), oxidation of substrate-immobilized silver nanoparticles (Ag NPs) in a wide range of conditions, including exposure to ambient air and controlled ozone environment under UV irradiation, and we correlated the degree of silver oxidation with surface-enhanced Raman scattering (SERS) enhancement factors (EFs). The SERS activity of pristine and oxidized Ag NPs was assessed by use of trans-1,2-bis(4-pyridyl)ethylene (BPE) and sodium thiocynate as model analytes at the excitation wavelength of 532 nm. Our study showed that the exposure of Ag NPs to parts per million (ppm) level concentrations of ozone led to the formation of Ag(2)O and orders of magnitude reduction in SERS EFs. Such an adverse effect was also notable upon exposure of Ag NPs under ambient conditions where ozone existed at parts per billion (ppb) level. The correlated XPS and SERS studies suggested that formation of just a submonolayer of Ag(2)O was sufficient to decrease markedly the SERS EF of Ag NPs. In addition, studies of changes in plasmon absorption bands pointed to the chemical enhancement as a major reason for deterioration of SERS signals when substrates were pre-exposed to ambient air, and to a combination of changes in chemical and electromagnetic enhancements in the case of substrate pre-exposure to elevated ozone concentrations. Finally, we also found UV irradiation and ozone had a synergistic effect on silver oxidation and thus a detrimental effect on SERS enhancement of Ag NPs and that such oxidation effects were analyte-dependent, as a result of inherent differences in chemical enhancements and molecular binding affinities for various analytes.  相似文献   

6.
Structural properties of SiO(x)C(y)-Ag nanocomposite thin films prepared by a dual process PVD-PECVD in the same reactor have been investigated. The experimental results have demonstrated the influence of a PECVD process carried out at room temperature for the growth of a dielectric matrix on the size and the distribution density of Ag nanoparticles (NPs) deposited beforehand by magnetron sputtering. The plasma during the growth of the encapsulation SiO(x)C(y) layer caused a diffusion of silver from NPs through the SiO(x)C(y) matrix associated with a decrease in the average size of nanoparticles and an increase of their distribution density. Silver diffusion is blocked at a barrier interface to form a buried layer of individual Ag NPs which, for instance, can find plasmonic applications. Silver also diffuses toward the outer surface inducing antibacterial properties. In both cases initial Ag NPs act as reservoirs for multifunctional properties of advanced nanostructured films.  相似文献   

7.
Metallic zinc nanoparticles (NPs) of 5-15?nm in diameter, formed in silica glass (SiO(2)) by Zn ion implantation of 60?keV, showed a strong ultraviolet absorption peak at around 4.8?eV, which has been assigned as the surface plasmon resonance (SPR) of Zn NPs, and another small peak at 1.2?eV, which has never been reported before. To identify the origin of the 1.2?eV peak, the correlations of thermal stability between the two peaks and Zn NPs were evaluated under annealing both in a vacuum (pure thermal stability) and in oxygen gas (thermal oxidation stability). The well-correlated stability between the 1.2?eV peak, the 4.8?eV peak and Zn NPs indicates that the 1.2?eV peak is not ascribed to radiation-induced defects but to the Zn NPs. The 1.2?eV peak can be ascribed to an SPR of Zn NPs in SiO(2), because the peak satisfies the criterion of the SPR of metallic NPs. Since the 4.8?eV peak is also expected to satisfy the criterion, Zn NPs in SiO(2) have two SPRs at 1.2 and 4.8?eV.  相似文献   

8.
Sun Y  Wei G  Song Y  Wang L  Sun L  Guo C  Yang T  Li Z 《Nanotechnology》2008,19(11):115604
Silver nanoparticles (Ag NPs) are one of the active substrates that are employed extensively in surface-enhanced Raman scattering (SERS), and aggregations of Ag NPs play an important role in enhancing the Raman signals. In this paper, we fabricated two kinds of SERS-active substrates utilizing the electrostatic adsorption and superior assembly properties of type I collagen. These were collagen-Ag NP aggregation films and nanoporous Ag films. Two probe molecules, 4-aminothiophenol (4-ATP) and methylene blue (MB), were studied on these substrates. These substrates showed reproducible SERS intensities with relative standard deviations (RSDs) of 8-10% and 11-14%, respectively, while the RSDs of the traditional thick Ag films were 12-28%. Also, the intensities for the 4-ATP spectrum on the collagen-templated nanoporous Ag film were approximately one order higher than those on the DNA-templated Ag?film.  相似文献   

9.
利用扫描俄歇微探针(SAM)和原子力显微镜(AFM)研究了SiO2衬底上在外加直流电场作用下沉积的Au薄膜及Au-Ag复层薄膜的表面形貌、结构变化及电迁移扩散行为。结果表明:①在衬底表面施加水平方向电场辅助沉积制备的Au薄膜其表面显示出平整的椭球形晶粒,并沿外电场方向呈织构取向。与未加电场的热蒸发沉积膜相比,具有较为均匀、有序的表面微观结构。②SiO2表面Au-Ag复层薄膜在直流电场作用下,Au,Ag物种同时向负极方向作走向迁移扩散,这与Au-Ag复层薄膜在Si(111)表面电迁移时Au,Ag分别向两极扩散的特点不同,反映了衬底性质对表面原子电迁移的影响。③Au-Ag复膜在电迁移过程中还发生了表面原子聚集状态的变化,原来沉积排布的细小晶粒在电迁移扩散过程中出现不均匀长大,导致薄膜表面粗糙度显著增加。  相似文献   

10.
Thin and thick Ag films on SiO2 substrates (mesoporous SiO2 and Soda-lime glass) were respectively prepared by thermal evaporation and spin-coating. The evolution of surface plasmon resonance absorption of the as-prepared samples was investigated when alternately heated in air and H2. It has been shown that the evolution behaviours were very different with Ag film thickness and substrates. The results were explained in terms of subtle difference of the two SiO2-based substrates in micro-structure or chemical composition, the redox of silver and relative Ag content.  相似文献   

11.
Mock JJ  Hill RT  Tsai YJ  Chilkoti A  Smith DR 《Nano letters》2012,12(4):1757-1764
The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity.  相似文献   

12.
Yun  Junggwon  Cho  Kyoungah  Park  Yoonbeom  Yang  Seunggen  Choi  Jinyong  Kim  Sangsig 《Nano Research》2017,10(2):683-689
We synthesized thermoelectric nanocomposites by mixing HgSe nanoparticles (NPs) and Ag NPs in a solution and investigated the thermoelectric properties of the nanocomposite thin films on flexible plastic substrates.The X-ray diffraction patterns and the X-ray photoelectron spectra of the nanocomposites demonstrate that cation-exchange reactions occurred spontaneously in the mixed solution of HgSe and Ag NPs and that the HgSe NPs were completely converted to Ag2Se when the Ag NP content was 20 vol.%.The maximum power factor and the thermoelectric figure of merit were obtained as 75 FμW/mK2 and 0.043 at 300 K,respectively,when the Ag NP content was 10 vol.%,which is 100 times higher than that of HgSe NP thin films.In addition,the mechanical stability of the thermoelectric nanocomposite film was confirmed through repeated bending tests.  相似文献   

13.
Bimetallic {Poly(ethylenimine) (PEI)-Ag/Au} multilayer film was in situ simultaneously fabricated by alternating immersions of a substrate in PEI-Ag+ and AuCl4 solutions followed by chemical reduction with NaBH4 solution. In the process, the AuCl4 ions not only play an important role of a reaction reagent, but also served as an assembly reagent. Au, Ag nanoparticles (NPs) were observed with a spherical morphology and well-dispersed in the composite multilayer film, and the size of Au NPs in the bimetallic {PEI-Ag/Au} multilayer film was smaller than that of the single Au NPs formed in {PEI/Au} multilayer films. It was also very interesting to observe that this bimetallic {PEI-Ag/Au} multilayer film exhibited more efficient electrocatalytic activity for the oxidation of ascorbic acid than the multilayer film containing only single Au or Ag NPs. These results indicated that this bimetallic composite multilayer film may be potentially applied in electrochemical biosensors.  相似文献   

14.
A surface plasmon resonance (SPR) imaging biosensor based on silver substrates was investigated to demonstrate that silver could be used as a substrate material for sensitive detection of biomolecular interactions, despite its poor chemical stability. The calculation results showed that oxidation of silver film may lead to a decrease in the sensitivity due to a variation in SPR characteristics such as a broader curve width and shallower minimum reflectance at resonance. The effect of a change in the refractive index of target analytes on the sensitivity was also explored. In particular, it is noteworthy that Ag/Au bimetallic substrates with a thin gold protection layer to prevent oxidation of a silver film can provide a significant amplification of SPR imaging signals in comparison with conventional gold substrates.  相似文献   

15.
Au/SiOx nanocomposite films have been fabricated by co-sputtering Au wires and SiO2 target using an RF magnetron co-sputtering system before the thermal annealing process at different temperatures. The structural and optical properties of the samples were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), optical transmission, and reflection spectroscopy. XPS analysis confirms that the as-prepared SiOx films are silicon-rich suboxide films. FESEM images reveal that with an increase in annealing temperature, the embedded Au NPs tend to diffuse toward the surface of the SiOx films. In IR spectra, the intensity of the Si-O-Si absorption band increases with the annealing temperature. Optical spectra reveal that the position and intensity of the surface plasmon resonance (SPR) peak are dominated by the effect of the inter-particle distance and size of the Au NPs embedded in the SiOx films, respectively. The SPR absorption peak shows the blue-shift from 672 to 600 nm with an increase in annealing temperature. The growth of silica nanowires (SiOx NWs) is observed in the film prepared on a c-Si substrate instead of a quartz substrate and annealed at temperatures of 1000 °C.  相似文献   

16.
Nickel–silver (Ni–Ag) core–shell nanoparticles (NPs) were prepared by depositing Ag on Ni nanocores using the liquid-phase reduction technique in aqueous solution, and their properties were characterised using various experimental techniques. The core–shell NPs had good crystallinity, and the thicknesses of the Ag nanoshells could be tuned effectively. The oxidation resistance of the Ag surface and the electroconductive properties of the Ni core allowed these Ni–Ag core–shell NPs to be used in a conductive paste. Thick films composed of Ni–Ag core–shell NPs were screen-printed on a polycrystalline silicon substrate then sintered at temperatures ranging from 500 °C to 800 °C. Stable resistivity was obtained when the sintering temperature was higher than 650 °C, and the electrical properties of the Ni–Ag core–shell paste were close to those of pure Ag paste. Thus, the Ni–Ag NPs can partly replace pure Ag NPs in conductive pastes.  相似文献   

17.
Growth of Ag nanoislands on air-oxidized Si(001), (111) and (110) surfaces has been investigated by reflection high energy electron diffraction (RHEED), scanning tunneling microscopy (STM) and cross-sectional transmission electron microscopy. We have shown that the oriented nanocrystalline Ag, similar to the epitaxial growth of Ag on clean Si surfaces, can be grown on oxide-covered Si surfaces. A thin oxide layer (~ 2-3 nm thick) is formed on ultra-high vacuum (UHV)-cleaned Si surfaces via exposure of the clean reconstructed surface to air. Deposition of Ag was carried out under UHV at different substrate temperatures and monitored by RHEED. RHEED results reveal that Ag deposition at room temperature leads to the growth of randomly oriented Ag islands while, in spite of the presence of the oxide layer between Ag islands and Si, preferred orientations with an epitaxial relationship with the substrate evolve when Ag is deposited at higher substrate temperatures. STM images of the oxidized surfaces, prior to Ag deposition, apparently do not show any order. However, Fourier transforms of STM images show the presence of a short range order on the oxidized surface following the unit cells of the underlying reconstructed Si surface. It is intriguing that Ag nanoislands follow an epitaxial orientational relationship with the substrate in spite of the presence of a 2-3 nm thick oxide layer between Ag and Si. Apparently, the short range order existing on the oxide surface influences the orientation of the Ag nanoislands.  相似文献   

18.
Photocatalytic degradation of methyl red dye by silica nanoparticles   总被引:1,自引:0,他引:1  
Silica nanoparticles (SiO2 NPs) were found to be photocatalytically active for degradation of methyl red dye (MR). The SiO2 NPs and SiO2 NPs doped with silver (and or) gold nanoparticles were prepared. From the transmission electron microscopy (TEM) images the particle size and particle morphology of catalysts were monitored. Moreover, SiO2 NPs doped with silver and gold ions were used as a photocatalyst for degradation of MR. The rate of photocatalytic degradation of MR was found to be increased in the order of SiO2 NPs, SiO2 NPs coated with gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs), SiO2 NPs coated with Ag NPs, SiO2 NPs coated with Au NPs, Ag+-doped SiO2 NPs, and Au3+-doped SiO2 NPs. The kinetic and mechanism of photocatalytic reaction were studied and accorded well with experimental results.  相似文献   

19.
Cha SN  Song BG  Jang JE  Jung JE  Han IT  Ha JH  Hong JP  Kang DJ  Kim JM 《Nanotechnology》2008,19(23):235601
A novel synthesis and growth method achieving vertically aligned zinc oxide (ZnO) nanowires on a silicon dioxide (SiO(2)) coated silicon (Si) substrate is demonstrated. The growth direction of the ZnO nanowires is determined by the crystal structure of the ZnO seed layer, which is formed by the oxidation of a DC-sputtered Zn film. The [002] crystal direction of the seed layer is dominant under optimized thickness of the Zn film and thermal treatment. Vertically aligned ZnO nanowires on SiO(2) coated Si substrate are realized from the appropriately thick oxidized Zn seed layer by a vapor-solid growth mechanism by catalyst-free thermal chemical vapor deposition (CVD). These experimental results raise the possibility of using the nanowires as functional blocks for high-density integration systems and/or photonic applications.  相似文献   

20.
The nano-modification of selected substrates by means of atmospheric cold plasma treatment was exploited for the two-dimensional (2D) self-assembling of silver nanoparticles (Ag NPs). Such a useful combination of the cold plasma treatment of substrate surface and an immediate easy deposition of Ag NPs creating the 2D self-assemblies on the substrates is published for the first time, to the best of our knowledge. Except for the cold plasma treatment, mainly the following parameters influenced the resulting NP assemblies: the choice of solvent mixture, concentration of Ag NP dispersions, and the deposition technique. The 2D self-assemblies of Ag NPs, providing the same work function as a Ag electrode, were formed on the cold plasma-treated substrates when a drop-casting technique was employed. The possibility of an easy preparation of the Ag NP 2D self-assemblies on substrates without using any chemical agents and/or evaporating chamber could be exploited, e.g.?in photovoltaic and light-emitting diode devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号