首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用直流电弧放电法制备出一种三维石墨烯纳米球材料。采用扫描电镜(SEM)、透射电镜(TEM)、拉曼光谱和X射线衍射光谱(XRD)等测试方法对三维石墨烯纳米球的形貌和结构进行了表征和研究。通过交流阻抗(EIS)、恒流充放电和循环稳定性测试等电化学测试手段来研究三维石墨烯纳米球作为锂离子电池负极材料的电化学性能。结果表明, 在电流密度为0.05 A/g下, 三维石墨烯纳米球作为锂离子电池负极材料的首次放电容量为485.9 mAh/g, 高于炭黑作负极的放电容量(401 mAh/g); 当电流密度为1 A/g时, 三维石墨烯纳米球负极材料仍然具有185.4 mAh/g的放电容量。在电流密度分别为0.5 A/g和2.5 A/g下, 充放电循环100次以后, 三维石墨烯纳米球的比容量几乎没有衰减, 这表明三维石墨烯纳米球作为锂离子电池的负极材料比炭黑具有更大的容量, 同时具有优异的循环稳定性。  相似文献   

2.
针对SnO2锂离子电池负极材料长循环性能差的缺点,把非晶SiO2引入SnO2材料中,形成SnO2-SiO2纳米复合材料。采用聚苯乙烯(PS)胶晶作为模板,制备出三维有序大孔SnO2-SiO2纳米复合材料。研究结果表明,3DOM SnO2材料晶体结构和3DOM SnO2-SiO2材料相似,但是加入SiO2以后,3DOM SnO2-SiO2材料的长循环性能得到显著提高。在500 mAh/g的电流密度下循环100次,此时加0%Si的3DOM SnO2-SiO2材料的充电比容量急剧衰减为147 mAh/g,加5%Si的3DOM SnO2-SiO2材料的充电比容量达654 mAh/g,此外500次循环后加5%Si的3DOM SnO2-SiO2材料充电比容量增至728 mAh/g。这些结果表明SiO2能够改善3DOM SnO2材料长循环稳定性。  相似文献   

3.
《功能材料》2021,52(9)
由于较高的理论容量,二硫化钼(MoS_2)是一种具有良好应用前景的锂离子电池负极材料;然而其也存在导电性较差和结构不稳定等问题。本文采用一步水热法将MoS_2原位生长在V_2C-MXene的表面,制备出了V_2C@MoS_2复合材料。利用XRD、SEM、TEM对制备的复合材料进行了结构表征,并采用循环伏安(CV)法、恒电流充放电法和交流阻抗法分析了该复合材料作为锂离子电池负极材料的电化学性能。结果表明,实验制得了结晶度良好的MoS_2纳米片,且均匀的负载在V_2C的表面;同时,掺杂的V_2C极大地提高了复合材料的导电性和结构稳定性,使V_2C@MoS_2作为锂离子电池负极材料表现出了优异的电化学性能,在50mA/g的电流密度下,循环50次后依然能保持524.4 mAh/g的可逆比容量,并且在1 A/g的大电流密度下,依然具有258.1 mAh/g的可逆比容量。  相似文献   

4.
李旭  孙晓刚  陈玮  王杰 《复合材料学报》2018,35(11):3219-3226
为提高硅基锂离子电池的电化学性能,制备了一种多微孔结构的集流体。以纸纤维为基体,多壁碳纳米管(MWCNTs)为导电剂,制得MWCNTs/纸纤维复合多孔导电纸代替铜箔作为负极集流体。MWCNTs负载中空Si微球复合材料作为负极活性材料。FESEM分析显示,中空Si-MWCNTs复合活性物质均匀分布在MWCNTs构建的三维导电网络的孔隙中,从而保证了材料的结构稳定性和化学稳定性。所制备的中空Si-MWCNTs/纸纤维复合锂离子电池具有良好的循环稳定性和较高的比容量,同时具有可逆性。在0.02 C的电流密度下,循环30次后其比容量稳定在1 300 mAh/g。在3 C的大电流密度下,比容量仍可稳定保持在330 mAh/g。恢复0.25 C充放电后,容量恢复为1 150 mAh/g。  相似文献   

5.
通过两步法制备了TiS_2纳米片多孔负极材料。以钛块为钛源,采用直流电弧等离子体法在H_2与Ar的混合气氛中制备TiH_(1.924)纳米粒子作为前驱体,与升华硫共混加热硫化得到TiS_2纳米片多孔负极材料。对材料进行X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)、拉曼(Raman)等表征,XRD与Raman结果显示得到晶化完全的TiS_2纳米材料;TEM与SEM结果表明TiS_2微观形貌呈纳米片状,纳米片沿空间任意方向生长形成多孔结构。以TiS_2纳米片多孔结构作为锂离子电池负极材料研究其电化学储锂性能,500 mA/g电流密度下循环时,其首次充放电比容量分别为816.0、1 193.0 mAh/g,50次循环后,容量仍保持550 mAh/g;在5 A/g的高电流密度下仍维持有100 mAh/g的容量,表现出优异的循环稳定性和充放电可逆性。  相似文献   

6.
采用醇热技术可控制备了中空核壳结构α-MoO3-SnO2二次锂离子电池复合负极材料。通过XRD、SEM、TEM、CV和恒流充放电等测试手段对材料结构、形貌和电化学性能进行了表征。结果表明: 构建的多元金属氧化物既具有电化学活性成分, 又含有骨架支撑部分, 独特的中空结构有效地缩短了电子和锂离子传输路径。电化学测试表明: 该材料在电流密度50 mA/g时循环100次后放电比容量仍高达865 mAh/g。在电流密度为1000 mA/g时循环100次后放电比容量仍达到545 mAh/g, 表现出优异的循环性能和倍率性能。该合成方法简单、成本低, 产量高, 可为制备其它中空核壳结构先进功能材料提供借鉴。  相似文献   

7.
用直流电弧等离子体法制备金属钼纳米粉体再使其与赤磷发生固相反应,用两步法制备出磷化钼纳米粒子。使用X射线衍射(XRD)和透射电镜(TEM)等手段表征磷化钼纳米粒子的结构并进行了电化学性能测试。结果表明,MoP纳米粒子呈球状,粒径为20~50 nm;在电流密度为100 mA/g的条件下MoP纳米粒子负极材料的首次放电比容量达到746 mAh/g,50次循环后放电比容量为241.9 mAh/g;电流密度为2000 mA/g时放电比容量为99.90 mAh/g,电流密度恢复到100 mA/g其放电比容量仍然保持247.60 mAh/g。用作锂离子电池的负极材料,MoP纳米粒子具有优异的稳定性和可逆性。  相似文献   

8.
石墨化碳具有充放电容量高、循环性能稳定等特点,是最有商业应用价值的锂离子电池负极材料之一,所以改性的碳负极材料一直是研究的重点.用TEM,HRTEM对用电弧放电法制备的纳米碳颗粒进行结构表征,并将其用作锂离子电池负极材料研究其电化学性能.研究结果表明,纳米碳颗粒负极具有较高的初次充电容量,达到了710mAh/g.但是初次放电效率低,不可逆容量损失大,在锂离子电池应用上还存在很多缺陷.必须对其加以改善使之成为一种较好的锂离子电池负极材料.  相似文献   

9.
廖立勇  单忠强  宋承鹏  田建华 《功能材料》2006,37(12):1920-1922
以氯化亚锡和高岭土为原料,通过醇解,氨解反应,制备了纳米SnO2/高岭土复合材料.利用XRD、TEM测试技术对复合材料进行了表征.结果表明,550℃焙烧后复合材料中的SnO2粒子平均粒径在20nm左右,较纯材料中的SnO2粒子团聚现象减少.将复合材料作为锂离子负极材料进行了研究,与纯氧化锡相比这种复合材料具有较高可逆容量(达741mAh/g),同时循环性能也得到了提高.  相似文献   

10.
孙杰  赵东林  刘辉  景磊  迟伟东  沈曾民 《功能材料》2012,43(15):2027-2030
以二茂铁为铁源,石油渣油为碳源,通过加压热解和空气氧化制备了碳包覆空心Fe3O4纳米粒子。采用X射线衍射(XRD)、透射电镜(TEM)以及高倍透射电镜(HRTEM)等测试方法对样品的形貌和结构进行表征。采用恒流充放电和交流阻抗方法测试碳包覆空心Fe3O4纳米粒子作为锂离子电池负极材料的电化学性能。在电流密度为0.2mA/cm2时,首次放电比容量高达1294.7mAh/g,30次循环之后其放电比容量为392.1mAh/g;电流密度为1mA/cm2时,首次放电比容量为216.3mAh/g,30次循环之后其放电比容量为113mAh/g。  相似文献   

11.
采用纳米铜粉为原材料,通过直接在空气气氛中氧化的方法制备了含有微量Cu的纳米CuO/Cu复合材料作为锂离子电池负极材料。采用XRD、SEM、TEM等材料结构分析方法和恒电流充放电测试技术对在250~500℃不同氧化温度下获得产物的结构和电化学性能进行研究。研究结果表明,在250~500℃下氧化4小时,纳米Cu粉基本氧化为CuO,其含量在94wt.%以上,并保持初始Cu粉的纳米尺寸。经250~450℃氧化的产物中有微量的Cu(3~4wt.%)保留下来,而500℃氧化的样品中未发现有Cu。用该方法制备的纳米CuO/Cu作为锂离子电池负极材料表现出良好的循环稳定性,其中,经450℃氧化的材料表现出最高的循环稳定性。经8个循环活化后,容量达到423mAh/g,经80次循环后,容量保持有377mAh/g,容量保持率接近90%。  相似文献   

12.
采用溶液法以SnCl4.5H2O和葡萄糖为原料合成了颗粒尺寸为几个纳米的超细Sn及SnO2颗粒分布于无定形碳基体的复合材料,并在溶液过程中引入少量石墨。采用XRD、SEM和TEM等材料结构分析方法和恒电流充放电等电化学测试方法分析研究了前驱体的煅烧温度和石墨的引入对获得产物的结构及其作为锂离子电池负极材料的电化学性能的影响。研究结果表明,在500~700℃的煅烧温度下获得的Sn/C及含少量SnO2的Sn/SnO2/C复合材料,由于其中的Sn及SnO2的超细纳米尺寸及碳基体的缓冲有效减小了Sn在脱嵌锂过程中的应变和粉化,使材料具有良好的循环性能。石墨的引入有效提高了复合材料的容量和循环稳定性。经500℃煅烧的复合电极材料相对于其它材料具有更高的容量,其首次可逆容量达520mAh/g,经初始几个循环后,容量趋于稳定,经100次循环后,容量保持在350mAh/g。  相似文献   

13.
制备长循环稳定、高容量的负极材料是锂离子电池实现大规模储能应用的前提之一。利用静电纺丝技术和水热硫化的方法制备了均匀分布的NiS2/碳纳米纤维(NiS2/C)复合材料。作为锂离子电池负极材料,NiS2/C电极的首次放电比容量为864.6 mAh/g,首次库仑效率为62.7%。其中不可逆容量为322.9 mAh/g,不可逆容量主要由转换反应的部分不可逆及固态电解质(SEI)膜的形成造成的。NiS2/C复合电极表现出优异的循环稳定性,200 mA/g下150次循环后容量仍然维持在519 mAh/g,容量保持率高达90.4%。此外,在2 A/g大电流密度下,NiS2/C电极的容量仍高于310 mAh/g表现出出色的倍率性能。借助XRD、SEM及TEM表征,分析发现包裹着NiS2纳米颗粒的碳纤维,作为良好的导电介质,既可以提高NiS2的导电性,也可缓解NiS2脱嵌过程中的体积膨胀,使得NiS2/C电...  相似文献   

14.
采用一种简便、绿色的冷冻干燥法制备介孔NiMoO4纳米簇.作为锂离子电池负极材料,介孔NiMoO4纳米簇展现出较高的比容量和倍率性能,在0.2 A/g的电流密度下循环100圈,其可逆容量维持在1104.8 mAh/g,每圈容量损失仅0.09%.即使在1.0 A/g和2.0 A/g的电流密度下,其可逆容量依然能分别维持在664.7mAh/g和468.4 mAh/g.此外,以介孔NiMoO4纳米簇为负极、商用LiFePO4为正极组装所得的全电池,在0.1 C(1 C=170 mA/g)下,容量稳定在152.1 mAh/g.介孔NiMoO4纳米簇电化学性能的提高与其独特的介孔结构、较短的锂离子扩散途径密切相关.本工作为设计高储锂性能多孔电极材料提供一个新的视角.  相似文献   

15.
亓鹏  朱丁  陈云贵 《功能材料》2012,43(5):657-659
采用湿法混料及高温热解法制备了锂离子电池用硅/石墨/碳复合负极材料,并研究了不同配方的复合材料结构及电化学性能。研究发现,硅含量为20%(质量分数)时,复合材料首次可逆容量为865mAh/g,循环30次后仍为757mAh/g,容量保持率可达88%,大大改善了硅基材料作为锂离子电池负极材料的电化学性能。  相似文献   

16.
通过阳极氧化法和后退火处理在铜箔上合成了三维网络结构氧化铜纳米线,将其作为负极材料制备了无需添加粘结剂的锂离子电池。研究了恒压氧化时间对材料形貌和电化学性能的影响。在1C的倍率下,氧化1000 s制备的CuO纳米线表现出最高的1172 mAh/g首圈放电比容量和594 mAh/g的可逆比容量,500圈循环可逆比容量为607.6 mAh/g,可逆容量保留率为102.3%。交联的三维网络结构CuO纳米线相互支撑,提供稳定的结构,有效缓解了CuO纳米线作为锂离子电池负极材料中的体积膨胀问题,表现出了优异的倍率性能和循环寿命。  相似文献   

17.
以氧化石墨和氯化亚锡为原料,采用原位合成法制得SnO2/石墨烯纳米复合材料。该方法不需外加还原剂,也避免了SnO2纳米粒子和石墨烯在机械混合过程中的团聚问题。XRD和TEM等的分析结果表明,纳米SnO2颗粒都均匀地分散在石墨烯表面,其中纳米SnO2的粒径和石墨烯的厚度分别为3~6 nm和1.5~2.0 nm。电化学测试结果表明:在200 mA/g电流密度下循环100次后,SnO2/石墨烯负极材料的嵌锂容量可稳定在552 mAh/g,容量保持率比单纯纳米SnO2提高了4.4倍;在40、400、800 mA/g的电流密度下,SnO2/石墨烯负极材料的放电容量可分别保持在724.5、426.0、241.3 mAh/g,表现出较好的倍率性能,该结果归因于石墨烯良好的导电性及其二维纳米结构。  相似文献   

18.
用化学还原-共沉淀法合成了锂离子电池纳米锌锡锑三元合金负极材料ZnSnSb2。通过XRD、TEM和电化学测试对材料进行了表征。所制备的材料粒径大小分布在5-15nm之间。在充放电电压为1.5V到0V范围内,初始可逆充电容量为708mAh/g,经过20周的循环后,充电容量保持为82.1%。充放电电压范围为0.9V到0V时,初始可逆充电容量为329mAh/g,经过20次充放电循环后,可逆充电容量仍然保持在95.7%。由于材料中非活性物质Li3Sb的作用以及材料所具有的纳米结构,使其循环性能大大提高。  相似文献   

19.
采用3,4,9,10-二萘嵌苯四酸二酐(PTCTA)为原料,经高温自由基聚合、气相沉积、脱氢、石墨化工艺制得锂离子电池用聚萘(PPN)负极材料。通过X射线衍射、扫描电子显微镜、激光显微拉曼光谱等检测技术对PPN负极材料的结构和表面形貌进行了分析与表征,研究了PPN作为锂离子电池负极材料的电化学行为。结果表明,PPN负极材料具有类似石墨的多片层结构,电化学测试表明,PPN负极材料具有良好的循环稳定性和倍率性能;在50mA/g电流密度下,PPN负极材料首次放电比容量为368.4mAh/g,经过200圈循环之后,PPN负极材料的放电比容量仍保持在300.3mAh/g。结果显示PPN适用于做锂离子电池负极材料。  相似文献   

20.
NiO作为过渡金属氧化物代表,具有能量密度较高、成本低的优点,在锂离子电池负极材料的应用中引起了广泛关注。通过海藻酸钠与金属离子的自主交联反应,以及碳化、氧化过程,制备了低成本的多孔纳米NiO/C复合材料。得到的复合材料中,NiO纳米颗粒分散均匀且被石墨化碳层包覆,并嵌入多孔相互连通的碳基体中,在提升复合材料整体导电性的同时抑制了活性材料在电化学反应中的体积膨胀。将其用作锂离子电池负极材料时,NiO/C复合材料在0.1,1 A/g的电流密度下分别具有608.2,307.2 mAh/g的比容量,并且在0.1 A/g电流密度下经过100圈循环后仍保持448 mAh/g的比容量,显示出优良的循环稳定性。优良的电化学性能充分显示出NiO/C复合材料在锂离子电池负极材料中的应用潜能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号