首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为降低二氧化钒(VO2)材料的相变温度并提高VO2材料的光学特性,采用溶胶-凝胶辅助水热法,控制硼(B)的掺杂原子数分数为6.0%,通过后续的高温退火处理制备硼-镁(B-Mg)共掺杂的纳米VO2粉体,然后将粉体制备成薄膜.通过对B-Mg共掺纳米VO2粉体微结构进行表征,探究Mg的原子数分数对复合材料相变温度和光学特性的影响,获得满足应用标准的B-Mg共掺杂纳米VO2材料.结果表明,复合材料中掺杂的B元素和Mg元素分别以B3+和Mg2+形式存在于VO2结构中,当Mg的原子数分数为1.8%时,复合材料表现出相对优秀的热致变色特性,且具有最低的相变温度(tc=30.8℃),其太阳光调制幅度(ΔTsol=11.8%)能维持在10%以上,平均可见光透过率(■=69.7%)比未掺杂的VO2薄膜高12.1%,满足热致变色智能窗户的要求.研究结果为制备适用于热致变...  相似文献   

2.
采用离子束增强沉积(IBED)法和溶胶-凝胶法(Sd-ged)在SiO2/Si衬底上制备了具有半导体相-金属相转换特性的二氧化钒薄膜.对两种方法制备薄膜的性能测试结果表明,其转换温度、相变滞豫、热电阻温度系数等都有较大差别.  相似文献   

3.
以五氧化二钒、浓盐酸、水合肼和碳酸氢铵为原料,合成氧矾碱式碳酸铵前驱体,并通过控制退火温度在氮气气氛下热处理前驱体制备M型二氧化钒粉体.采用X射线衍射、差热分析、扫描电子显微镜等方法对样品成分、相变温度和晶体形貌进行了分析.结果显示:当升温速率和保温时间一定时,不同的热处理温度和气氛对粉体的晶型和成分有重要影响;不同的热处理温度热解氧钒碱式碳酸铵,保温30min能得到不同价态的氧化钒粉体;当500℃温度热处理30min时,可以得到纯的M型二氧化钒粉体.有序结构的理论晶粒尺寸为20~40nm,实际颗粒尺寸在1μm左右,粉体相变温度为66℃;通过热处理氧钒碱式碳酸铵前驱体可以制备M型二氧化钒粉体,工艺简单、条件容易控制.  相似文献   

4.
钨-氟共掺杂二氧化钒的水热法制备及表征   总被引:1,自引:0,他引:1  
以五氧化二钒(V2O5)为原料,草酸为还原剂,通过水热法制备二氧化钒(VO2)纳米粉体,使用X射线衍射、扫描电子显微镜-能谱仪联用和差示扫描热量分析仪等对样品进行表征分析.研究发现,钨-氟的掺杂可降低VO2的相变温度,使其接近室温(低于25℃);控制不同的反应参数(如反应体系内液体体积)可以制得不同形貌的VO2粉体;当水热反应温度为190℃,水热反应时间为72 h,煅烧温度为800℃时,可得到晶型较完整的VO2粉体.  相似文献   

5.
选取性质稳定且还原能力较强的硫代乙酰胺作为硫源和还原剂,通过简单水热法制备二硫化钼(MoS2)催化剂,探究不同柠檬酸的添加量对其电化学性能的影响.使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)进行形貌和微观结构表征,利用循环伏安法(CV)、线性电势扫描法(LSV)、塔费尔曲线(Tafel)等电化学方法对其进行性能表征.结果表明,柠檬酸的添加能够增加催化剂的电化学活性表面积,增强MoS2催化剂析氢反应(HER)的催化活性.  相似文献   

6.
根据二氧化钒在68℃附近发生相变的这一特性,选用V2O5和W2O3为前驱物,通过在玻璃片上镀膜,采用微波等离子体增强法,合成了氮杂二氧化钨钒(V0.98W0.02O2-xNy)薄膜.通过XRD表征了样品的组成,用自制的仪器测量了合成样品的相变温度,结果表明:样品为氮杂二氧化钨钒(V0.98W0.02O2-xNy),通过氮掺杂能有效降低二氧化钨钒薄膜的相变温度,相变温度最低可以降至35℃.  相似文献   

7.
为综合提取石煤含氟浸出液中的钒、钼,本文研究了利用三烷基胺(N235)从含氟溶液中分离钒、钼的萃取热力学及工艺.通过考察分配比D与N235物质的量浓度的关系,使用斜率法确定出萃取钒、钼的萃合物组成分别为(R3NH)·VO2SO4和R3N·MoO3·H2O,计算得出萃取反应的平衡常数分别为41.305和50.350.探究分配比与萃取温度的关系,绘制出lg D-T-1图,通过热力学计算得出温度在25~45℃范围内,利用N235萃取钒、钼的反应均为放热反应,且均可自发进行;以N235为萃取剂(体积分数为20%),TBP为相改进剂(体积分数为5%),DT-100为稀释剂,在水相pH值为1.80、相比V(O)/V(A)为4∶1的条件下,常温萃取5 min,钒和钼的萃取率分别为84.10%和96.61%,经三级逆流萃取后,钒和钼的萃取率均在99%以上.负载有机相经过先硫酸反萃钒,后氨水反萃钼的分步反萃工艺实现了钒、钼的分离.研究揭示了N235萃取...  相似文献   

8.
为解决传统冰蓄冷工质过冷度大、凝固效率低的问题,基于化学共沉淀方法,引入酸处理和表面活性剂十二烷基苯磺酸钠(sodium dodecylbenzene sulfonate,SDBS),制备了高稳定Fe3O4包覆多壁碳纳米管(multi-walled carbon nanotube,MWCNT)纳米复合材料.通过X射线衍射(X-ray diffraction,XRD)和红外光谱对物相进行表征,并对H2O、SDBS+H2O、MWCNT+H2O、MWCNT+SDBS+H2O、MWCNT-Fe3O4+H2O和MWCNT-Fe3O4+SDBS+H2O等水基蓄冷工质的相变凝固特性进行研究.结果表明,经过界面修饰的复合材料稳定性好,Fe3O4粒径为10.87 nm;MWCNT纳米材料可作为成核基底...  相似文献   

9.
采用溶剂热法制备磁性四氧化三铁(Fe3O4)纳米粒子,随后利用改进的溶胶-凝胶法制备四氧化三铁与二氧化硅复合纳米粒子(Fe3O4@SiO2),再以聚乳酸(PLA)为基体,通过熔融共混工艺制备Fe3O4@SiO2/PLA共混材料。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、万能拉伸试验机、熔体流动速率仪(MFR)和振动样品磁强计(VSM)等对共混材料的形貌、结晶结构、热性能、力学性能、熔体流动速率和磁性能进行表征分析。结果表明:添加量为1%(以质量分数计)的Fe3O4@SiO2纳米粒子可在PLA基体中均匀分散,与基体有良好的界面相容性。相比于纯PLA,Fe3O4@SiO2/PLA共混材料的热性能变化不大,当Fe3O4<...  相似文献   

10.
利用沉淀法合成了球形六方相氧化钨(h?WO3),通过调控六方相向单斜相的相变,可控制备了六方/单斜WO3(h/m?WO3)“异相结”催化剂。采用X射线衍射(XRD)、扫描电镜(SEM)和比表面积(BET)等对WO3催化剂的晶相结构及组成、粒子大小和比表面积进行了表征。光催化分解水产氧的实验结果表明,相较于纯六方相WO3,具有合适晶相组成的h/m?WO3展现了显著的光催化性能。结合六方相和单斜相的能带位置,表面光电压表征结果发现,h/m?WO3“异相结”的形成显著促进了催化剂表面光生电子和空穴的高效分离,进而提高了催化剂的光催化活性。  相似文献   

11.
采用水热合成手段,以磷钼酸为多金属氧酸盐(简称多酸)建筑块,三苯基膦为有机配体,通过自组装的方式制备了一种无机-有机杂化化合物,通过X-射线单晶衍射技术确定其分子式为H15{(PMo12O40)2[MoO4-(PPh3)4]2[NaO3-(PPh3)3][(H2O-PPh3)3](化合物1)。该化合物是由[PMo12O40]3-、[MoO4-(PPh3)4]2-、[NaO3-(PPh3)3]5-和H2O-PPh3<...  相似文献   

12.
采用溶胶-凝胶法和水热合成法制备H3PMo12O40(PMo12)/TiO2复合光催化剂并应用于工业废水的降解。利用红外光谱仪(IR),X射线衍射仪(XRD),X射线光电子能谱(XPS)和扫描电子显微镜(SEM)进行测定,并在紫外光照射下分析光催化剂对DNBP废水的光催化降解性能。考察了废水的初始pH值、催化剂用量及重复利用率等对DNBP废水降解的影响。结果表明,在光照时间为5 h, pH值为5.10,用量为1.00 g/L的条件下,复合光催化剂较单纯TiO2催化剂的光催化性能有明显提高,降解率达到98.36%,COD去除率达到53.18%,且POM/TiO2复合催化剂回收利用3次仍具有较高活性。  相似文献   

13.
用离子束增强沉积方法对二氧化钒多晶薄膜作Ar和W掺杂,明显改变了二氧化钒薄膜的相变温度。研究表明,成膜时注入的氩在二氧化钒结构形成前就很快外释,掺杂Ar对相变温度降低的贡献主要来自间隙Ar。W原子的掺杂可有效地将二氧化钒多晶薄膜的相变温度降低到室温附近,为大幅提高薄膜的室温电阻-温度系数提供了可能。  相似文献   

14.
将密度泛函理论第一性原理的计算方法与晶体结构预测CALYPSO软件相结合,在0~100 GPa下对BeP2的结构进行预测,研究了其在高压下的结构与物性.预测结果表明:在常压下, α -BeP2相为立方结构,其空间群为I41/amd, 该结果与实验所得结构一致.当压强为30.1 GPa时, α -BeP2相发生结构相变,由α -BeP2相转变为β -BeP2相,其结构转变为四方结构,空间群为P43212.当压强为35.4 GPa时, β -BeP2相发生结构相变,由β -BeP2相转变为γ -BeP2相,其结构转变为正交结构,空间群为Imma.在相变过程中,晶体结构体积发生坍塌,坍塌率分别为7.1%和10.9%, 属于一级相变.电子性质计算表明:在0 GPa下, α -BeP2结构的带隙为0.457 eV; 在30.1 GPa下, β -BeP2结构的带隙为0.957 eV, 为窄带隙半导体; 在35.4 GPa下, γ -BeP2结构在费米面处其导带与价带发生交叠,具有金属性.  相似文献   

15.
采用单辊快淬法制备Fe91-xZr7Cr2Bx(x=10,12)和Fe81Zr7M2B10(M=Nb,W)非晶合金,并对上述非晶合金进行不同温度热处理。合金的热性能、微观结构及磁性能分别利用X射线衍射仪(XRD)、同步差热分析仪(STA) 和振动样品磁强计(VSM)测得。研究表明四种非晶合金的STA中均存在三个晶化放热峰,但初始晶化产物及晶化过程不同,Fe81Zr7Nb2B10非晶合金的初始晶化产物与Fe81Zr7Cr2B10合金相似为单一α-Fe相,Fe81Zr7W2B10非晶合金的初始晶化产物与Fe79Zr7Cr2B12合金相似为α-Fe相和Fe23B6相。不同的晶化产物导致合金的矫顽力(Hc)随热处理温度的变化存在差异,Fe81Zr7Nb2B10合金经热处理后具有较低的矫顽力(Hc)。  相似文献   

16.
以1,3,6-萘三磺酸钠(Na3L)、4,4’-联吡啶(4,4’-bipy)、Tb(NO3)3·6H2O为原料,通过水热合成反应制备了Tb配合物[Tb(H2O)8]·(L)·2(4,4’-bipy)·3H2O(配合物1)。利用单晶X-射线衍射、傅里叶红外光谱、热重分析以及元素分析等表征手段,分析了配合物1的分子结构和组成,并且研究了其热稳定性和荧光发射性质。结果表明,Tb3+是八配位,呈四方反棱柱配位构型,与8个H2O分子配位形成[Tb(H2O)8]3+;L3-没有与金属离子配位,只平衡了分子内的正电荷;L3-的磺酸基与配位H2O分子之间形成氢键,将[Tb(H2O)8]3+和L3-  相似文献   

17.
大气中CO2质量分数于2021年创下历史新高(414.7 μg/g),由此引发的一系列生态环境问题已成为不争的事实。为解决全球变暖的问题,CO2资源化利用势在必行。从CO2利用和甲醇(MeOH)经济性角度看,CO2加氢制备MeOH是一个非常具有发展潜力的能源路线,可作为实现碳中和的关键路径之一。总结了均相体系中以H2作为还原剂,还原CO2制备MeOH的最新进展;围绕CO2直接加氢制备MeOH、经CO2衍生物加氢制备MeOH以及经HCOOH歧化制备MeOH等3条路径,介绍了每条路径中涉及的催化剂体系设计、构?效关系以及反应机理;概述了每条加氢路径存在的不足,并提出了实现工业化CO2加氢制备MeOH需解决的问题。  相似文献   

18.
基于第一性原理的卡里普索(CALYPSO)晶体结构预测方法,在0~100 GPa压力下研究了BaN2晶体的相变行为及其物理性质.研究发现:在常压下BaN2晶体为α -BaN2相结构,其空间群为C2/c; 压力为31 GPa时,晶体结构由α -BaN2相转变为β -BaN2相,其空间群为P21/c.计算α -BaN2相和β -BaN2相的能带结构显示, α -BaN2相具有金属特征, β -BaN2相具有半导体性质.计算Bader电荷转移显示,电荷从Ba原子向N原子转移,其中N原子是受主, Ba原子是施主.  相似文献   

19.
NaY(WO4)2功能材料是钨酸盐体系中一种重要的无机功能材料。对NaY(WO4)2功能材料的制备方法和应用领域进行了综述,介绍了高温固相法、水热法、微乳液法、溶胶-凝胶法等多种制备方法,并且归纳阐述了各自的特点。同时,阐述了NaY(WO4)2功能材料的在照明和显示、光学材料、光催化材料等新兴领域的应用及未来研究方向。  相似文献   

20.
镁和镁合金的高化学活性以及氧化膜的疏松多孔导致镁合金的耐腐蚀性能较差。以AZ31B镁合金为基体,采用水热法在镁合金表面制备出二氧化铈/硬脂酸超疏水涂层,重点研究了水热反应温度和时间对涂层形貌及耐腐蚀性能的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和能谱(EDS)对镁合金表面涂层的相组成、微观形貌及元素组成进行测试,通过电化学测试来表征二氧化铈/硬脂酸超疏水涂层的耐腐蚀性能,利用超疏水测试检验涂层的疏水性。结果表明:当水热反应温度为120℃,反应时间为6 h时,可以在镁合金表面制备出均匀的涂层,该涂层由大量细小球形颗粒紧密连接而成,涂层致密完整,厚度约为13μm,涂层主要组成相为CeO2。电化学测试结果表明:与空白镁合金基体相比,二氧化铈/硬脂酸复合涂层的腐蚀电流密度为5.36×10-6 A·cm-2,降低了一个数量级,且其电化学容抗弧直径明显增大,说明该涂层可以显著提高镁合金基体的耐腐蚀性能。同时,该涂层还具有较好的超疏水性,水滴静态接触角达161°。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号