首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
为了研究页岩储层演化对其分形维数的影响,以鄂尔多斯盆地延长组低成熟度陆相页岩、松辽盆地沙河子组高成熟度陆相页岩、川南地区龙马溪组高—过成熟度海相页岩为例,利用X射线衍射分析、地球化学分析、氮气吸附实验等手段,结合FHH与热力学模型,研究不同分形维数的演化特征,利用灰色关联系数法分析不同演化阶段分形维数的控制因素。结果表明:低成熟度陆相页岩分形维数较低,高成熟度海相、陆相页岩具有较高的分形维数。高—过成熟度海相页岩中,较高的孔表面积与孔体积会造成孔隙复杂程度明显增高,但这种关系在低成熟度陆相页岩并不明显,可能是滞留烃造成微孔阻塞或覆盖孔隙表面,使分形维数下降。随着演化程度的增加,页岩储层分形维数的主要影响因素逐渐从矿物组成变成总有机碳含量。  相似文献   

2.
川东南龙马溪组页岩孔隙分形特征   总被引:5,自引:0,他引:5  
基于低温氮气吸附分形几何学研究方法,对川东南龙马溪组页岩储层进行了孔隙分形特征研究,并运用分形FHH模型计算了孔隙分形维数,讨论了分形维数与孔隙结构、有机碳含量、页岩矿物成分之间的关系。研究表明:川东南龙马溪组页岩以中孔为主,孔隙内部特征以墨水瓶状孔和狭缝状孔为主;页岩样品分形维数为2.629 2~2.898 0,反映了页岩孔隙结构复杂和非均质性强的特征;页岩平均孔径越小、微小孔隙越多,孔隙结构越复杂,孔表面越不规则,比表面积和分形维数则越大;有机碳含量和微孔发育程度对分形维数影响较大。通过分形维数可定量描述孔隙结构的复杂程度和不均一性,为研究页岩孔隙结构的分布特征提供了思路。  相似文献   

3.
基于低温氮气吸附分形几何学研究方法,对鄂尔多斯盆地东北缘陆相延安组及海陆过渡相太原组富有机质煤系页岩进行孔隙结构和分形特征研究,运用分形FHH模型计算了大孔隙(4.34~100nm)和小孔隙(4.34nm)对应的分形维数D_1与D_2,对比讨论了孔隙结构参数与分形维数的关系,以及TOC、矿物含量对两者的影响。研究结果表明:(1)延安组孔径分布在1.8~59nm,呈"双峰型",以墨水瓶状、狭缝状和平行板状孔为主;太原组孔径主要分布在3~4.5nm,呈"单峰型",以墨水瓶状孔为主。(2)煤系页岩具有双重分形特征,D_1与D_2正相关,且D_1D_2,表明大孔隙空间结构更加复杂。延安组两类孔隙空间结构均比较复杂,太原组大孔隙空间结构非常复杂,而小孔隙均质性强。(3)煤系页岩平均孔径越小,微小孔隙越多,比表面积越大,总孔体积越大,分形维数越大,即孔隙结构越复杂,孔表面越不规则;延安组D_1、D_2和太原组D_1均可反映各自孔隙结构特征。(4)太原组孔隙结构参数和分形维数受TOC及矿物成分含量影响较延安组明显。(5)延安组页岩储层优于太原组,更利于煤系页岩气的吸附、赋存、扩散和渗流。  相似文献   

4.
分形维数是分析煤和页岩微观孔隙结构的重要参数之一。目前主要是基于低温N2吸附数据进而利用Frenkel?Halsey?Hill(FHH)模型,获得煤和页岩中孔(2~50 nm)与宏孔(>50 nm)的表面粗糙分形维数,对其微孔(<2 nm)分形维数的研究还较少。为深入研究煤和页岩的微孔特征,基于微孔填充与孔径分布理论,对比分析了煤和页岩微孔结构的分形特征。选取煤和页岩样品进行低温CO2吸附实验,计算并分析两者的微孔分形维数。结果表明:煤的微孔分形维数分布在2.6~2.8之间,平均为2.75;页岩的微孔分形维数分布在2.8~2.9之间,平均为2.88。煤的微孔比表面积分布在100~300 m2/g之间;页岩的微孔比表面积集中在15~30 m2/g之间,页岩的孔隙分布零散且数量少,说明分形维数越大,微孔结构更加复杂。此外,分别对煤与页岩的微孔分形维数、表面粗糙分形维数进行了对比,发现虽然煤的微孔比表面积均远大于页岩,但其孔径分布、孔隙结构比页岩简单,微孔分形维数小于页岩。同时,由于中孔、宏孔数量少,比表面积小,孔隙表面较为光滑,煤的表面粗糙分形维数小于页岩。微孔分形维数和表面粗糙分形维数分别受微孔结构复杂程度与中孔、宏孔表面粗糙程度的影响,微孔结构越复杂,中孔、宏孔表面越粗糙,分形维数越大。  相似文献   

5.
为明确准噶尔盆地中部下乌尔禾组深层陆相页岩孔隙结构以及分形特征,以东道海子凹陷下乌尔禾组页岩为研究对象,在深入剖析页岩矿物及地球化学特征的基础上,采用场发射扫描电镜、低温N2吸附等研究方法,定量表征下乌尔禾组页岩孔隙结构特征,并基于FHH模型计算页岩孔隙的分形维数,揭示总有机碳含量(TOC)、矿物组分、孔隙结构参数和分形维数的关系及其地质意义。研究结果表明,研究区下乌尔禾组页岩主要发育无机孔和微裂缝,孔径分布呈多峰型,以平行板状或窄缝状孔隙为主;页岩孔隙发育受TOC和石英、长石、黏土矿物含量的控制,导致孔隙结构之间差异性较大,非均质性强。研究区下乌尔禾组页岩孔隙具有双重分形特征,其中表面分形维数(D1)为2.452 2~2.594 8,平均为2.540 9;结构分形维数(D2)为2.604 5~2.774 8,平均为2.705 6。TOC与分形维数呈负相关,孔隙结构参数(比表面积和孔体积)和矿物组分(石英、长石以及黏土矿物)含量与分形维数呈正相关。脆性矿物(石英、长石)和黏土矿物含量的增加有助于微纳米尺度孔隙以及微裂缝的发育,比表面积和孔体积增大,分形维数也增加,孔隙非均质性越强,孔隙结构越复杂。  相似文献   

6.
文中以下寒武统(牛蹄塘组)、上奥陶统(五峰组)、下志留统(龙马溪组),以及上三叠统(须家河组)页岩为研究对象,在低压氮气吸附测试实验结果的基础上,探讨了四川盆地富有机质页岩的分形特征。研究表明:四川盆地富有机质页岩具有双重分形特征,存在明显的孔径分界点,其中小孔隙分形维数的平均值要小于大孔隙,说明大孔隙结构的复杂程度大于小孔隙;分形维数D_1可描述页岩孔隙表面的分形特征,分形维数D_2可描述页岩孔隙结构的分形特征;D_1越大,页岩孔隙表面越不规则,页岩孔隙表面将有更多的吸附位,使页岩吸附气体能力增大;D_2越大,页岩孔隙结构越复杂,使页岩的解吸、扩散和渗流变得困难。因此,页岩孔隙中高表面分形维数D_1值和低孔隙结构分形维数D_2值对页岩气藏的开发有重要的意义。  相似文献   

7.
川南龙马溪组页岩孔隙分形特征   总被引:1,自引:0,他引:1  
以川南长宁—兴文地区龙马溪组页岩为对象,基于压汞实验测试结果研究其分形特征。对压汞法实验结果进行分析,采用Menger海绵模型和基于热力学关系的分形模型,计算得到川南地区龙马溪组页岩的分形维数。研究结果表明基于热力学关系的分形模型比较恰当地反应了川南长宁—兴文地区龙马溪组页岩的孔隙结构;龙溪组页岩具有明显的分形特征及较大的分形维数,分形维数在2.9337~2.9941;页岩孔隙的分形维数与TOC含量、脆性矿物含量呈正相关,而与黏土矿物含量、碳酸盐岩含量及长石呈负相关,其中黏土矿物中高岭石和绿泥石、碳酸盐岩中方解石及脆性矿物的石英对页岩孔隙结构分布特征影响较大。  相似文献   

8.
页岩储层矿物组分的含量及其分布特征是水力压裂的重要参考因素。以中扬子地区下寒武统水井沱组页岩为例,利用ImageJ软件对页岩CT扫描图像进行处理和分析,研究页岩储层中矿物组分的分布特征,并讨论矿物组分含量和分形维数之间的关系。结果表明:页岩CT图像上矿物组分的密度比有机质和孔隙的密度要大得多,可以根据CT图像的灰度值识别矿物组分。页岩中矿物组分含量越多,矿物组分的分形维数也越大。在矿物组分含量相近的情况下,矿物组分结构越复杂,其分形维数也越大。基于灰度CT图像的页岩矿物组分分形特征研究是页岩储层评价的有效补充,可以更好地指导页岩脆性评价。  相似文献   

9.
为了刻画不同类型储层孔隙结构及其对渗透率的影响,以压汞、核磁共振及N2吸附实验为基础,基于分形理论对砂岩、煤岩及页岩的分形特征进行了分析,建立了砂岩、煤岩、页岩的等效毛管迂曲度模型,探讨了常规及非常规储层岩石分形特征参数对渗透率的影响。结果表明:砂岩、煤岩、页岩的分形维数主要为2.6~3.0,毛管平均迂曲度分形维数主要为1.1~2.3,分形维数大小与岩石渗透率具有负相关性;影响岩石渗透率的微观孔隙结构因素包括岩石的非均质性、孔喉分布、孔隙表面粗糙程度及毛管迂曲度等,其中毛管迂曲度对岩石渗透率的影响最大;煤岩的等效毛管迂曲度较小,砂岩中等,页岩较大。最后,利用分形理论模型对39组岩石样品渗透率进行预测,认为砂岩和煤岩的渗透率预测效果均较好,但对于具有强非均质性的页岩来说,其渗透率已经达到n D级,虽然预测结果具有一定的吻合度,但预测精度仍有待进一步提高。此次研究对深入探讨不同类型储层岩石微观渗流机理具有一定的参考价值。  相似文献   

10.
选取鄂尔多斯盆地镇北地区延长组7块超低渗透岩心样品,分别开展铸体薄片、扫描电镜、X衍射、高压压汞和核磁共振等实验,明确了超低渗透储层孔喉分布特征、孔隙类型、矿物组成及其含量;运用分形理论研究了储层孔喉分形特征,系统分析了分形维数与储层物性、孔隙结构参数和矿物成分及其含量之间的关系。结果表明:研究区储层孔隙类型主要为残余粒间孔、溶蚀孔和晶间孔。储层矿物成分以石英和长石为主,黏土矿物中绿泥石含量最高。根据毛管压力曲线形态和排驱压力可将储层孔隙结构分为Ⅰ类、Ⅱ类和Ⅲ类3种类型,其储集性能和渗流能力依次变差,孔隙结构非均质性逐渐增强。高压压汞所得的孔喉大小分布具有多重分形特征,依据分形特征曲线存在的明显转折点,将孔隙空间分为大孔、中孔和微孔,微孔相对于大孔和中孔而言孔隙分布较为均匀和规则,对应分形维数最小。核磁共振技术可以更全面地表征储层的孔隙空间,T2T2cutoff段孔喉分布不具有分形特征,T2T2cutoff段可动流体孔隙空间和有效孔隙符合分形结构,对应的分形维数均反映相互连通孔隙的复杂程度。储层孔喉分形维数与孔隙度和渗透率之间具有较好的负相关性,与孔隙结构参数之间也存在较好的相关关系,储层的矿物组成及其含量是决定分形维数大小的内在因素,进而影响储层质量和孔隙结构特征。  相似文献   

11.
页岩气储层孔隙特征差异及其对含气量影响   总被引:2,自引:0,他引:2       下载免费PDF全文
运用氩离子抛光+扫描电镜和氮气吸附法对渝东南地区龙马溪组的24个页岩样品和川东南地区须家河组10个页岩样品孔隙进行测试,探讨页岩的孔隙特征差异及其对含气量的影响。研究发现,其孔隙类型主要包括有机质孔、矿物粒间孔、溶蚀孔、晶间孔、矿物层间解理缝和微裂缝等;孔隙形态多为不规则,多呈开放状态;孔隙结构较复杂,纳米级有机质孔丰富,主孔位于2~10 nm。须家河组页岩样品以无机中大孔和微裂隙为主。有机质孔发育差异原因可能是由页岩的有机质类型本身化学分子性质差异造成,也可能是具有催化生气作用的无机矿物或元素与有机质赋存关系差异造成。数理统计结果显示,孔隙类型并不是含气量大小的主控因素,TOC是页岩气藏最本质因素。须家河组页岩中孔隙结构主要受无机矿物影响;龙马溪组页岩样品的TOC是比表面积和孔径为2~10 nm孔发育的本质因素,提供页岩气主要的储存空间。伊利石是孔径为2~10 nm孔发育的重要影响因素,也是提供页岩气存储空间的重要物质。  相似文献   

12.
渝西地区是重要的深层页岩气潜力区.该文以龙马溪组页岩储层为研究对象,利用氩离子抛光-场发射扫描电镜、总有机碳(TOC)测试、X射线衍射、低温氮吸附实验、地球化学元素测试等技术手段,通过对储层特征、沉积环境的系统研究,建立FHH分形模型,综合讨论龙马溪组页岩储层发育特征及其影响因素.结果表明,龙马溪组下部页岩储层矿物组分...  相似文献   

13.
为研究上二叠统龙潭组海陆交互相页岩气储层发育特征,基于黔西地区龙潭组参数井钻井资料,系统采集泥页岩样品,运用X-衍射分析、有机地化、扫描电镜、氮吸附、含气量测定及等温吸附等实验手段,开展储层特征研究。该区龙潭组泥页岩具有单层薄、层数多、总厚大的特点,矿物成分主要为黏土矿物和石英,黏土矿物含量较高;干酪根显微组分主体上为镜质组,均为Ⅲ型干酪根,有机碳含量整体上大于3.0%,镜质体反射率(R_o)平均为1.01%,有机质成熟度偏低;储层整体上为超低孔、超低渗,孔隙类型为粒间孔、粒内孔、有机质孔和微裂缝,发育大量纳米级孔隙,以中孔为主,主要为细颈广体的墨水瓶型孔和狭缝型孔,比表面积和总孔体积较大,孔隙分形维数大,相关系数高,表明泥页岩表面粗糙程度大,连通性差,非均质性强。泥页岩现场解吸总含气量较高,吸附性能较强,且互层的煤层含气量高,资源潜力较大;具备良好的页岩气发育地质条件和富集空间,可选取有效的储层改造技术进行合层开采。  相似文献   

14.
在松辽盆地湖相泥页岩低温氮气吸附实验的基础上,利用 FHH 模型探讨了湖相泥页岩纳米级孔 隙结构分形维数与比表面积、平均孔径及 TOC 含量的关系,进一步对比了湖相与海相泥页岩孔隙分形 维数特征。 结果表明:①湖相、海相泥页岩纳米级孔隙均具有明显的分形特征,且大孔隙(孔径为 5~ 100 nm)结构复杂,其分形维数高于小孔隙(孔径小于 5 nm)。 ②湖相泥页岩纳米级孔隙结构相对简单, 分形维数小于海相泥页岩。 ③分形维数与 TOC 含量呈正相关关系,湖相泥页岩有机质丰度对分形维数 影响较小。 ④湖相泥页岩分形维数 D1 与平均孔径具有明显的线性关系,表明 D1 可以反映湖相泥页岩 孔隙结构特征;海相泥页岩分形维数 D2 与孔隙比表面积具有明显的指数关系,表明 D2 可以反映海相 泥页岩孔隙比表面积特征。  相似文献   

15.
利用扫描电镜以及比表面积分析仪产生的试验数据、吸附脱附曲线对页岩气储层储集空间类型、微观孔隙结构的系统研究表明,川南—黔北XX地区龙马溪组页岩气储层储集空间多样,包括残余原生粒间孔、晶间孔、矿物铸模孔、次生溶蚀孔、黏土矿物间微孔、有机质孔以及构造裂缝、成岩收缩微裂缝、层间页理缝、超压破裂缝等基质孔隙和裂缝类型。发现研究区龙马溪组泥页岩比表面积和孔体积都较大且具有良好的正相关性,并认为微孔隙越发育,泥页岩的比表面积和孔体积越大,越有利于泥页岩对页岩气的吸附储集。建立了泥页岩的孔隙模型,并利用吸附脱附曲线分析了研究区龙马溪组泥页岩的微观孔隙结构特征,指出研究区龙马溪组泥页岩以极为发育的微孔为主,其中为泥页岩提供最大量孔体积和表面积的孔隙主要为Ⅲ类细颈瓶状(墨水瓶状)孔和Ⅰ类开放透气性孔。认为有机碳含量、伊/蒙间层矿物含量以及热演化程度是控制研究区龙马溪组页岩气储层微观孔隙结构的主要因素。  相似文献   

16.
我国海陆过渡相烃源岩分布范围广,具有成熟度适中及厚度大等特点,页岩气勘探前景良好。前人研究主要聚焦于页岩气成藏条件、模式及生烃潜力,而对储层孔隙结构影响因素及复杂程度的定量表征研究较少。为了探讨海陆过渡相泥页岩的孔隙结构和分形特征,以柴达木盆地东部上石炭统泥页岩为研究对象,对研究区15件泥页岩样品采用低温液氮吸附及扫描电镜进行孔隙结构、分形特征研究,并在此基础上探讨了泥页岩有机地球化学、矿物组成、孔隙结构参数与分形维数的关系,进而揭示泥页岩孔隙结构发育影响因素。结果表明:①泥页岩孔隙形态主要有2类,第一类为楔形—狭缝型和细颈瓶—墨水瓶状型,第二类为四周开放的平行板状孔,孔隙类型以粒间孔缝、溶蚀孔和有机质孔最为发育。②应用FHH分析模型计算出了泥页岩孔隙分形维数,以P/P0=0.45为界,泥页岩存在2种不同吸附解吸机制,用D1D2分别表示P/P0<0.45和P/P0>0.45范围内的孔隙分形维数。泥页岩孔隙具有明显的分形特征,D1分形维数与黏土矿物和TOC含量呈负相关关系;D2分形维数与黏土矿物和TOC含量呈正相关性。表明影响分形维数的主要因素为黏土矿物和有机质含量。D1D2与孔隙结构参数的相关性都较好,但D1趋势线比D2拟合性更好,说明小孔对孔隙结构参数影响更为重要。③分形维数D1D2之差△D=0.393,表明其结构复杂程度相差很大,双重分形特征明显。但分形维数D2越大,孔隙结构趋于复杂,孔隙表面积更加粗糙,不利于气体的渗流。  相似文献   

17.
为了研究页岩储层微观孔隙结构特征,以川南地区龙马溪组页岩为研究对象,应用场发射扫描电镜(FE-SEM)定性描述页岩镜下孔隙形态及确定其类型,创新使用低温氩气(Ar)吸附实验测量页岩样品的比表面积、孔体积以及孔径分布,实现了页岩小于100 nm(纳米级)孔隙的连续测量,并根据FrenkelHalsey-Hill(FHH)模型研究了页岩孔隙结构的分形特征,探讨了有机质对页岩孔隙结构及分形特征的影响。结果表明:川南地区龙马溪组页岩储层主要发育有机质孔、粒间孔及粒内孔,并以有机质孔为主。Ar吸附等温线表明,纳米级孔隙以狭缝型为主,孔径主体分布在10 nm以下的微孔和介孔中,呈“三峰”特征,微孔主要集中在0.6~0.9 nm以及1.8~2.0 nm,介孔主要集中在4.0~5.0 nm。纳米级孔隙分形维数为2.55~2.64,表现出较强的非均质性。有机碳(TOC)含量控制了页岩纳米级孔隙的发育,TOC含量的增加使得页岩中微孔及其所占比例增高,分形维数增大,孔隙结构趋于复杂,有利于页岩储层吸附能力的增强。该研究成果对川南地区龙马溪组页岩储层纳米级孔隙结构特征研究具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号