首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two-step synthesis of Y2〇3:Eu nanostructures was performed. It includes microwave driven hydrothermal and calcination stages. Performed route results in crystallization of Y4〇(OH)g(N〇3):Eu crystals initially, then Y2〇3:Eu crystals after calcination. Arranged Eu contents in relation to overall cation quantity were set to 2 mol%, 10 mol% and 20 mol%. Varying europium concentrations influence habit of obtained Y4〇(OH)g(N〇3):Eu crystals from needle-like to plate-like and as a result, also shapes of final Y2〇3:Eu nanostructures. Additionally, certain amount of Eu2+ ions was detected in as-grown material using laser spectroscopy and decay kinetics measurements. Obtained material was calcined at 1200 °C in the air, which results in oxidation of Eu2+ ions and crystallization of small number of cubic EU2 O3 nanocrystals. Characterization of obtained materials was performed using XRD, SEM, TEM, EDX, CL,Raman and photoluminescence spectroscopy.  相似文献   

3.
The new electrorheological (ER) material, a particle material composed of Y4O(OH)9(NO3) and NH4NO3, was obtained.They display better ER performance.The shear stress of the suspension of Y4O(OH)9(NO3)(NH4NO3)2.8 material in dimethyl silicone oil reaches 1469 Pa at an electric field strength (E) of 4.2 kV·mm-1 and the shear rate (γ) of 150 s-1.The relative shear stress, τE/τ0 (τE and τ0 are the shear stresses at E=4.2 and 0 kV·mm-1, respectively), is up to 29, which is 19 times that of pure Y2O3 material.The dielectric and conductive property of the materials play important roles in the modification of the ER effect of the particle materials.The researches on these new ER materials are very useful for obtaining a better understanding on the mechanism of the ER effect and finding an ideal ER material.  相似文献   

4.
Highly efficient phosphors under vacuum ultraviolet excitation are still demanded for the development of plasma display panels and Hg-free fluorescent lamps. The phosphors of Eu3+ doped (Y, Gd, Lu)BO3 were synthesized with solid state reaction method and the con-tents of Y3+, Gd3+, and Lu3+ for plasma display panel red phosphor were optimized under vacuum ultraviolet excitation. Two new potential candidates, which were (Y1-S-7TGdSLuT)BO3: Eu3+ (0相似文献   

5.
(Y, Gd)BxV1- xO4-x :Eu3 phosphors were prepared by solid state reaction. The red emission color purity of (Y, Gd)Bx V1 - x O4-x :Eu3 phosphor is much better than that of the recent widely-used commercial red emitting phosphor (Y,Gd)BO3:Eu3 and its relative emission intensity is 84% of the commercial phosphor (Y, Gd)BO3 :Eu3 . It is expected that (Y, Gd) Bx V1 -x O4: Eu3 phosphor will be a promising candidate for PDP (plasma display panels) application.  相似文献   

6.
Under 980 nm laser excitation,red emission(5D0-7FJ(J=0,1,2)) of Eu3+ was observed in cubic Y2O3 codoped with Eu3+ and Yb3+.The dependence of the upconverted emission on doping concentration and laser power was studied.Yb3+ emission around 1000 nm(2F5/2-2F7/2) was reported upon excitation of Eu3+ ions.The decay curves of 5DJ(J=0,2) emission of Eu3+ under excitation of 266 nm pulse laser were examined to investigate the Eu3+→Yb3+ energy transfer process.Cooperative energy transfer process was discussed as the possible mechanism for the visible up-conversion luminescence of Eu3+ and near-infrared down-conversion emission of Yb3+.  相似文献   

7.
The Ba3Y2(BO3)4:Eu^3+ phosphor was synthesized using a high temperature solid-state reaction method and the luminescent characteristics were investigated. The emission spectrum exhibited one strong red emission at 613 nm, corresponding to the electric dipole 5D0-TF2 transition of Eu^3+, under 365 nm excitation. The excitation spectrum of 613 nm indicated that the Ba3Y2(BO3)n:Eu^3+ phosphor was effectively excited by ultraviolet (UV) (254, 365 and 400 nm) and blue (470 nm) light. The effect of Eu^3+ concentration on the 613 nm emission of the Ba3Y2(BO3)n:Eu^3+ phosphor was measured. The results showed that the emission intensity increased with increasing Eu^3+ concentration, and then decreased. The CIE color coordinates of Ba3Y2(BO3)4:Eu^3+ phosphor were x=0.641 and y=0.359 at 15 mol.% Eu^3+.  相似文献   

8.
The process to prepare pure phase of hexagonal Y2O2S was investigated. Effect of mixed flux of Na2CO3 and S amounts was studied. The phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the single phase of Y2O2S with smooth morphology could not be obtained as the molar ratio of Y2O3, Na2CO3 and S was in the range of 1:(0.5-1):(2-3) until the molar ratio was increased to 1:1.5:4. Different Er3+ concentration doped Y2O2S...  相似文献   

9.
This work focused on the zinc powder coated with Y(OH)3 microparticles by means of ultrasonic immersion for performance improvement of zinc electrodes in alkaline battery systems.Scanning electron microscopy and other characterization techniques were applied to examine the influence of the ultrasonic power on the sonochemical growth of Y(OH)3 microparticles in direct contact with zinc powder.Electrochemical properties of zinc electrodes containing Y(OH)3 microparticles were discussed through the measurement...  相似文献   

10.
YAl3(BO3)4: Eu3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu3+ phosphors with concentration of Eu3+ ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength re-gion. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu<3+ ions in YAl3(BO3)4: Eu3+ phosphors was 8 mol%.  相似文献   

11.
Multiphase nano-Ni(OH)2 doped with Y or La was prepared by supersonic co-precipitation method. The crystal morphology, structure and particle size were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and particle size distribution (PSD). The electrochemical performance of samples was investigated by electrochemical workstation and battery tested system. The results indicated that micro-morphology and grain size were changed with the changing of supersonic power, pH values and doping elements. The morphology of Y doped sample was from the flake-like to the needle-like with the increase of supersonic power; Particles were from quasi-spherical particles into needle-like with the increase of pH values; As the supersonic power increased, the proportion of α-Ni(OH)2 increased initially and then decreased. pH value was very important to the formation of crystalline phase. Lower pH value was beneficial to the formation of α-Ni(OH)2. However, the pH values had a slight effect on the reaction reversibility. Complex electrodes were prepared by mixing 8 wt.% nickel hydroxides with commercial micro-size spherical nickel. The discharge capacity of electrodes increased initially and then decreased with the increase of supersonic power. When the supersonic power was 60 W and the pH value was 9, the sample had the largest dis-charge capacity (358 mAh/g) at 0.5 C rate, which was 122.7 and 76 mAh/g higher than the spherical nickel electrode and La doped sample electrode, respectively.  相似文献   

12.
High quality NaYF4:Eu3+ luminescent materials were successfully synthesized via a facile template technique by hydrothermal method.The samples were characterized by X-ray powder diffraction(XRD),transmission electron microscopy(TEM) and fluorescence spectroscopy(FS).The incorporating of Eu3+ ions into NaYF4 crystal lattice influenced the symmetry types of NaYF4 crystals,resulting in phase transformation of NaYF4 crystals between α and β phase.The pure hexagonal phase of branched NaYF4:Eu3+ was obtained as the Eu3+ concentration reached 15 mol.%.In addition,the luminescence color was tuned by changing the doping concentration of Eu3+ ions.  相似文献   

13.
White body-color (Y, Gd)BxV1- xO4-x :Eu3 phosphors were prepared by coprecipitation reaction. Under VUV excitation at 147 nm, the red emission colorimetric purity of (Y, Gd)BxV1- xO4-x :Eu3 phosphor is much better than that of commercial PDP (plasma display panels) phosphor (Y, Gd)BO3:Eu3 . But its relative emission intensity is only about 90% of the commercial phosphor.  相似文献   

14.
The europium-doped LaF3 nanoparticles were prepared by refluxing method in glycerol/water mixture and characterized with X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), UV-vis diffuse reflectance spectrum, and photoluminescence spectra. The results of XRD indicated that the obtained LaF3: Eu3+ nanoparticles were well crystallized with a hexagonal structure. The FE-SEM image illustrated that the LaF3: Eu3+ nanoparticles were spherical with an average size around 30 nm. Under irradiation of UV light, the emission spectrum of LaF3: Eu3+ nanoparticles exhibited the characteristic line emissions arising from the 5D0→7FJ (J=1, 2, 3, 4) transitions of the Eu3+ ions, with the dominating emission centered at 590 nm. In addition, the emissions from the 5D1 level could be clearly observed due to the low phonon energies (-350 cm-1) of LaF3 matrix. The optimum doping concentration for LaF3: Eu3+ nanoparticles was determined to be 20mol.%.  相似文献   

15.
Single phase of BaGd0.9-xMxEu0.1B9O16 (M=Al or Sc, 0≤x≤0.3) powder was prepared by the solid-state reaction and its photoluminescence (PL) properties were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation. Monitored with 613 nm emission, the excitation spectra of BaGd0.9-xMxEu0.1B9O16 consisted of three broad bands peaking at about 242, 208, and 142 nm, respectively. The one at about 242 nm originated from the charge transfer band (CTB) of O2-→Eu3+. The other two were assigned to the absorption of the host, which was overlapped with absorptions among borate groups, f→d transition of RE3+ (RE=Gd, Eu), and the charge transfer transition of O2-→Gd3+. The maximum emission peak was observed at about 613 nm in the emission spectra of BaGd0.9-xMxEu0.1B9O16 under both 254 and 147 nm excitation, which originated from the electric dipole 5D0→7F2 transition of Eu3+. When excited with 254 nm, the integral emission intensity of Eu3+ increased after Al3+ or Sc3+ substituting Gd3+ partly in BaGd0.9Eu0.1B9O16. Under 147 nm excitation, the integral emission intensity of Eu3+ decreased after some Gd3+ was replaced by Sc3+, but increased after adding appropriate Al3+ into BaGd0.9Eu0.1B9O16.  相似文献   

16.
The Y–Ni alloy is a primary precursor for the preparation of high-performance La–Y–Ni-based hydrogen storage materials. However, it cannot be produced continuously at low cost, which limits the wide popularization and application of La–Y–Ni-based materials. In this paper, this problem was solved perfectly using electrochemical reduction of Y2O3 in the LiF-YF3 system. It is found that the reversible reduction from Y3+ to Y on the W electrode takes only one step, namely a significant soluble–soluble reaction controlled by Y3+ diffusion throughout the melt. Four typical signals of square wave voltammetry (SWV) corresponding to different kinds of Y–Ni intermetallic compounds are observed in LiF−YF3 and LiF–YF3–Y2O3 melts, and reduction potential can become positive with the addition of Y2O3, probably because of the formation of more complexes in the melts. Homogeneous Y–Ni alloy samples were produced continuously and prepared via galvanostatic electrolysis by using bargain-price raw material (Y2O3) and setting the current density at 10 A/cm2 on the nickel electrode, before they were collected into a bottom receiver. A series of analyses including scanning electron microscopy-energy idspersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma mass spectrometry (ICP-MS), demonstrate that concentration of yttrium in Y–Ni alloy is adjustable within the wide range of 44 wt% to 72 wt% by fine-tuning the electrolysis temperature (875–1060 °C) in the LiF-YF3 system to ensure the optimal hydrogen storage performance and economic efficiency of La–Y–Ni-based hydrogen-storage materials.  相似文献   

17.
Gold nanoparticles dispersed Y2O3 films were prepared through a sol-gel method by using yttrium acetate and Au nanoparticles colloid as precursors. The films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-VIS absorption spectra. XRD patterns and TEM images of Y2O3 + Au films give the same resuits on structure and particle size as that of pure Y2O3 films. The surface plasma resonance (SPR) of Au nanoparticles in Y2O3 + Au film was observed around 550 nm in the absorption spectrum and its position shifts to red with increasing annealing temperature is caused by the increase of dielectric constant of Y2O3 matrix and the size of Au nanoparticles. The second and third order nonlinear optical effects of Y2O3 + Au films were also observed. The photoluminescent properties of Y2O3 : Eu + Au films were investigated and results indicate that there exist an energy transfer from Eu^3 + to Au nanoparticles and this energy transfer decreases the emission of Eu^3 + in Y2O3 : Eu + Au film.  相似文献   

18.
Uniform core-shell Eu3+:Y2O3/SiO2 spheres were synthesized via precipitation and the Stöber method. The structural transition of core-shell Eu3+:Y2O3/SiO2 was studied by using high pressure photoluminescence spectra. With pressure increasing, the emission intensities of 5D07F0,1,2 transitions of Eu3+ ions decreased and the transition lines showed a red shift. The relative luminescence intensity ratio of 5D07F2 to 5D07F1 transitions decreased with increasing pressure, indicating lowering asymmetry around Eu3+ ions. During compression, structural transformation for cores in the present core-shell Eu3+:Y2O3/SiO2 sample from cubic to monoclinic took place at 7.5 GPa, and then the monoclinic structure turned into hexagonal above 15.2 GPa. After the pressure was released, the hexagonal structure transformed back to monoclinic and the monoclinic structure was kept stable to ambient pressure.  相似文献   

19.
Y2O2S:Eu nano crystallines were prepared by a new ethanol assisted combustion synthesis method using sulfurcontained organic fuel in an ethanol-aqueous solution. The as-prepared nanocrystallines were characterized by X-ray diffraction, transmission electron microscope, photoluminescence spectra and X-ray luminescence spectra. It is shown that the assistant fuel ethanol has the effect of decreasing the water needed, simplifying the experiment procedure by dissolving rare earth nitrate and sulfur-contained organic fuel into an even solution, and prompting the formation of rare earth oxysulfide by igniting firstly during heating that leads to combustion decomposition reaction. Y2O2S : Eu nano crystallines with strong photoluminescence and X-ray luminescence are obtained using thioacetamide as organic fuel. Mixtures of Y2O3 : Eu and Y2O2S : Eu are acquired using thiourea as fuel, and the content of Y2O2S : Eu increases until reaches to about half of the Y2O3 : Eu with the increasing amount of thiourea. Y2O2SO4 : Eu emerges when S/Y = 6 and increases with increasing thiourea amount.  相似文献   

20.
Nanocrystalline cubic Y2O3:Eu were prepared by combustion reaction.The crystal structure and morphology were analyzed by means of X-ray diffraction(XRD) and transmission electron microscopy(TEM).The luminescent properties of the powder were investigated.The charge transfer band position showed redshift from 241 to 251 nm,which was related to the change of the local surroundings of Eu3+ ions in nanocrystalline Y2O3:Eu.The ground-state electronic structure and charge transfer transition of both the bulk and nanocrystalline cubic Y2O3:Eu crystals were calculated by the ab initio self-consistent relativistic DV-Xα(discrete variational Xα) method.A complete 35-ion cluster was selected to simulate the local coordination surroundings of Eu doped in Y2O3 bulk crystals while five additional incomplete clusters were also selected to simulate the local surroundings of Eu ions in nanocrystals.It could be found that the charge transfer energies of the nanocrystalline Y2O3:Eu were less than that of the bulk counterpart,which was consistent with the redshift phenomenon of the CT band in the excitation spectrum of the nanocrystalline Y2O3:Eu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号