首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study determines the optimum operating parameters for a proton exchange membrane fuel cell (PEMFC) stack to obtain small variation and maximum electric power output using a robust parameter design (RPD). The operating parameters examined experimentally are operating temperatures, operating pressures, anode/cathode humidification temperatures, and reactant flow rates. First, the dynamic Taguchi method is used to obtain the maximum and stable power density against the different current densities, which are regarded as the systemic inputs considered a signal factor. The relationship between control factors and responses in the PEMFC stack is determined using a neural network. The discrete parameter levels in the dynamic Taguchi method can be divided into desired levels to acquire real optimum operating parameters. Based on these investigations, the PEMFC stack is operated at the current densities of 0.4–0.8 A/cm2. Since the voltage shift is quite small (roughly 0.73–0.83 V for each single cell), the efficiency would be higher. In the range of operation, the operating pressure, the cathode humidification temperature and the interactions between operating temperature and operating pressure significantly impact PEMFC stack performance. As the operating pressure increasing, the increments of the electric power decrease, and power stability is enhanced because the variation in responses is reduced.  相似文献   

2.
Power assisted fuel cell   总被引:2,自引:0,他引:2  
A hybrid fuel cell demonstrated pulse power capability at pulse power load simulations synonymous with electronics and communications equipment. The hybrid consisted of a 25.0 W Proton Exchange Membrane Fuel Cell (PEMFC) stack in parallel with a two-cell lead-acid battery. Performance of the hybrid PEMFC was superior to either the battery or fuel cell stack alone at the 18.0 W load. The hybrid delivered a flat discharge voltage profile of about 4.0 V over a 5 h radio continuous transmit mode of 18.0 W.  相似文献   

3.
This paper describes dynamic modeling and simulation results of a small wind–fuel cell hybrid energy system. The system consists of a 400 W wind turbine, a proton exchange membrane fuel cell (PEMFC), ultracapacitors, an electrolyzer, and a power converter. The output fluctuation of the wind turbine due to wind speed variation is reduced using a fuel cell stack. The load is supplied from the wind turbine with a fuel cell working in parallel. Excess wind energy when available is converted to hydrogen using an electrolyzer for later use in the fuel cell. Ultracapacitors and a power converter unit are proposed to minimize voltage fluctuations in the system and generate AC voltage. Dynamic modeling of various components of this small isolated system is presented. Dynamic aspects of temperature variation and double layer capacitance of the fuel cell are also included. PID type controllers are used to control the fuel cell system. SIMULINKTM is used for the simulation of this highly nonlinear hybrid energy system. System dynamics are studied to determine the voltage variation throughout the system. Transient responses of the system to step changes in the load current and wind speed in a number of possible situations are presented. Analysis of simulation results and limitations of the wind–fuel cell hybrid energy system are discussed. The voltage variation at the output was found to be within the acceptable range. The proposed system does not need conventional battery storage. It may be used for off-grid power generation in remote communities.  相似文献   

4.
A hybrid power source was demonstrated to successfully power a simulated power load encountered in portable military electronics and communications equipment. The hybrid system consisted of a 25 W proton exchange membrane fuel cell (PEMFC) stack connected in parallel with a 70 F capacitor bank. The cyclic regime of 18.0 W for 2 min followed by 2.5 W for 18 min was chosen as the baseline for the simulation of power load. The operating potential cut-off voltage for pass/failure was set to 3.0 V. At room temperature (23–25°C), the PEMFC alone could not handle the described baseline regime with the PEMFC operating potential dropping below the cut-off voltage within 10 s. The hybrid, however, continuously powered the same regime for 25 h. Its operating potential never reached the voltage cut-off point, not even during the high load of 18.0 W. The tests with hybrid configuration were aborted after 25 h of operation with no signs of output degradation, suggesting that further extended operation was possible.  相似文献   

5.
This paper presents the development of an intelligent uninterruptible power supply (UPS) system with a hybrid power source that comprises a proton-exchange membrane fuel cell (PEMFC) and a battery. Attention is focused on the architecture of the UPS hybrid system and the data acquisition and control of the PEMFC. Specifically, the hybrid UPS system consists of a low-cost 60-cell 300 W PEMFC stack, a 3-cell lead–acid battery, an active power factor correction ac–dc rectifier, a half-bridge dc–ac inverter, a dc–dc converter, an ac–dc charger and their control units based on a digital signal processor TMS320F240, other integrated circuit chips, and a simple network management protocol adapter. Experimental tests and theoretical studies are conducted. First, the major parameters of the PEMFC are experimentally obtained and evaluated. Then an intelligent control strategy for the PEMFC stack is proposed and implemented. Finally, the performance of the hybrid UPS system is measured and analyzed.  相似文献   

6.
In this study, we design and fabricate a fuel cell system for application as a power source in unmanned aerial vehicles (UAVs). The fuel cell system consists of a fuel cell stack, hydrogen generator, and hybrid power management system. PEMFC stack with an output power of 100 W is prepared and tested to decide the efficient operating conditions; the stack must be operated in the dead-end mode with purge in order to ensure prolonged stack performance. A hydrogen generator is fabricated to supply gaseous hydrogen to the stack. Sodium borohydride (NaBH4) is used as the hydrogen source in the present study. Co/Al2O3 catalyst is prepared for the hydrolysis of the alkaline NaBH4 solution at room temperature. The fabricated Co catalyst is comparable to the Ru catalyst. The UAV consumes more power in the takeoff mode than in the cruising mode. A hybrid power management system using an auxiliary battery is developed and evaluated for efficient energy management. Hybrid power from both the fuel cell and battery powers takeoff and turning flight operations, while the fuel cell supplies steady power during the cruising flight. The capabilities of the fuel-cell UAVs for long endurance flights are validated by successful flight tests.  相似文献   

7.
A hybrid system with jointed battery and PEMFC is popular and of great potential in New Energy Vehicle (NEV) application. However, reliability and efficiency remain to be improved for commercial products. To reflect the complicated physics inside the proton exchange membrane fuel cell (PEMFC), the PEMFC model consisting of inner muti-physics process and other accessories was built, then a complete hybrid system was established when a matched battery, DC/DC, regenerative braking were taken into consideration. Based on the above model, the stack state and system performance under standard cycle for heavy duty vehicle-CWTVC were obtained. According to the simulation results, fuel cell states such as pressure, water content and voltage suffers severe oscillation with external load, especially in the highway cycle. Membrane electrode assembly (MEA) suffers from pressure impact with average value of more than 24 kPa in highway cycle. In the aspect of relative humidity, the PEMFC stack is most threatened in road cycle. As for the hybrid system, its efficiency and state of charge (SOC) fluctuation perform worst in urban cycle and road cycle respectively, while its highest efficiency occurs in road test. Operating mode of fuel cell has influence on hybrid system. When 3-level mode of fuel cell output was applied, the efficiency increased to its peak value at medium level of 28 kW and then declined gradually. H2 consumption had an opposite trend compared to efficiency. In the aspect of battery SOC, it declines in operating process and its fluctuations decreases when medium level got bigger. The 3-level mode and 4-level mode were compared using this model. It can be concluded that although 3-level mode performs slightly better in hybrid system efficiency, H2 consumption, pressure impact, it does not have absolute advantage over 4-level mode in other indicators.  相似文献   

8.
A lumped parameter dynamic model is developed for predicting the stack temperature, temperatures of the exit reactant gases and coolant water outlet in a proton-exchange membrane fuel cell (PEMFC) system. A dynamic model for a water pump is also developed and can be used along with the thermal model to control the stack temperature. The thermal and water pump models are integrated with the air flow compressor and PEMFC stack current–voltage models developed by Pukrushpan et al. to study the fuel cell system under open and closed-loop conditions. The results obtained for the aforementioned variables from open-loop simulation studies are found to be similar to the experimental values reported in the literature. Closed-loop simulations using the model are carried out to study the effect of stack temperature on settling times of other variables such as stack voltage, air flow rate, oxygen excess ratio and net power of the stack. Further, interaction studies are performed for selecting appropriate input–output pairs for control purpose. Finally, the developed thermal model can assist the designer in choosing the required number of cooling plates to minimize the difference between the cooling water outlet temperature and stack temperature.  相似文献   

9.
For analyzing the performance of 120 kW polymer electrolyte membrane fuel cell (PEMFC) system and its air supply system, an air system test bench was built, then applied on a 120 kW PEMFC system test bench composed of air supply subsystem, hydrogen supply subsystem, stack, cooling subsystem and electronic control subsystem. The strategy composed of feedforward table and Piecewise proportional integral (PI) feedback control strategy is employed to regulate the flow rate and pressure of air supply system. Firstly, the air compressor map and the mapping relationship between the speed of air compressor, opening of back-pressure valve and stack current are obtained by carrying out experiments on the PEMFC air system bench. Then, the max output performance, steady-state performance, the startup performance, the dynamic response abilities of PEMFC system are tested, respectively. During the experiments, performances under different test conditions were analyzed by comparing parameters such as voltage inconsistency, average voltage, minimum voltage, voltage range, net power of the PEMFC system, and stack power. The test results show that the air supply system can provide qualified flow rate and pressure for the PEMFC stack. The peak power of the stack is 120 kW and net power of the system is 97 kW when the current is 538 A. The response time from rated net power to idle net power is 12 s and from idle net power to rated net power is 23 s. The overshoot of average voltage and minimum voltage in the process of increasing load is both 0.01 V, which are 0.015 V and 0.02 V lower than that when the load is decreased, respectively. The dynamic response speed and stability of the PEMFC system in the process of decreasing the load are better than those in the process of increasing the load.  相似文献   

10.
分析了质子交换膜燃料电池(PEMFC)的机理模型,在此基础上运用MATLAB的Simulink仿真工具,建立了PEMFC发电系统带负载模型。通过仿真,分析了负载对PEMFC电堆的各项动态特性(燃料的流量、效率、输出电压等)的影响,以及DC/DC、负载端的电压响应。仿真结果中负载电压呈三相交流正弦波形,表明搭建的整个PEMFC发电系统是基本正确的,为实现PEMFC并网的实时分析和动态优化提供了理论依据和参考方法。  相似文献   

11.
This work aims to construct an efficient and robust fuel cell/battery hybrid operating system for a household application. The ability to dispatch the power demands, sustain the state of charge (SOC) of battery, optimize the power consumption, and more importantly, ensure the durability as well as extend the lifetime of a fuel cell system is the basic requirements of the hybrid operating system. New power management strategy based on fuzzy logical combined state machine control is developed, and its effectiveness is compared with various strategies such as dynamic programming (DP), state machine control, and fuzzy logical control with simulation. Experimental results are also presented, except for DP because of difficulties in achieving real‐time implementation and much faster response to load variation. The given current from the energy management system (EMS) as a reference of the fuel cell output current is determined by filtering out various harmful signals. The new power management strategy is applied to a 1‐kW stationary fuel cell/battery hybrid system. Results show that the fuel cell hybrid system can run much smoothly with prolonged lifetime.  相似文献   

12.
The growing demand for renewable energy sources has favored attention towards fuel cell and in particular towards Polymer Electrolyte Membrane Fuel Cell (PEMFC) as an alternative energy source. Despite the advantage of possessing high current density, standalone isolated fuel cell operate at low voltage and the output is heavily dependent on the operating condition. This demands the integration of fuel cells with suitable power conditioning units. The present work aims at designing a controller which achieves the objective of regulated output voltage irrespective of variation in both load and source operating condition. The design and integration of the converter with PEMFC necessitates the development of a mathematical model, which can represent the PEMFC dynamics under different operating conditions. PEMFCs are known to exhibit distributed dynamics and possess long term memory, which are more accurately represented by fractional calculus. In this regard, a hybrid optimization based approach for fractional order modeling of PEMFC has been proposed. Further using the model, a fractional order Proportional Integral (FOPI) controller has been designed for regulating the load voltage. The presence of an extra tuning parameter in FOPI allows greater flexibility in achieving the system specification as compared to the classical Integer Order Proportional Integral (IOPI) controller. The effectiveness of the proposed FOPI controller for PEMFC fed PWM DC/DC converter has been validated under varying operating condition of the PEMFC and load perturbations in real time environment.  相似文献   

13.
In this paper a collaborative simulation platform for proton exchange membrane fuel cell (PEMFC) power systems is presented, where the stack is simulated by a two-phase distributed parameter model and the auxiliary units by lumped parameter models. By exchanging the dynamic data between the external load/auxiliary units and PEMFC stack, dynamic simulation of PEMFC stack has been carried out during the load changes for various states associated with different characteristic variables. The internal states of the stack can be observed due to variation of external load/auxiliary units. Numerical experiments are provided for a special case with multiple cycles of load changes derived from an acceleration mode of a fuel cell vehicle. The numerical results demonstrate that the “undershoot” of output voltage is due to the response lag of the auxiliary units and liquid water accumulation in the fuel cell stack.  相似文献   

14.
A hybrid power source for pulse power applications   总被引:2,自引:0,他引:2  
Portable 12 V power supplies are used extensively for communications and power tool applications. These devices demand fast response times of the power supply. Fuel cells are generally best suited to continuous power applications and require an initial warm-up period, although they offer the prospect of increased operational duration over a battery for a given weight of portable system. This paper investigates the combination of specific energy performance from the fuel cell system with the specific power and response time of the battery. Two separate hybrid systems have been developed and tested; a planar, 20-cell, polymer electrolyte membrane fuel cell (PEMFC) stack together with either a lead–acid or nickel/cadmium battery; and a conventional 20-cell, bipolar, PEMFC stack. Both systems have been tested under pulse-load conditions at temperatures between −20°C and +40°C, and for comparison, the individual components have undergone similar tests. The hybrid systems have successfully operated continuously for several weeks under load profiles that the fuel cell alone could not sustain.  相似文献   

15.
This paper introduces a novel dynamic semiempirical model for the proton exchange membrane fuel cell (PEMFC). The proposed model not only considers the stack output voltage but also provides valid waveforms of component voltages, such as the no‐load, activation, ohmic, and concentration voltages of the PEMFC stack system. Experiments under no‐load, ramping load, and dynamic load conditions are performed to obtain various voltage components. According to experimental results, model parameters are optimised using the lightning search algorithm by providing valid theoretical ranges of parameters to the lightning search algorithm code. In addition, the correlation between the vapour and water pressures of the PEMFC is obtained to model the component voltages. Finally, all component voltages and the stack output voltage are validated by using the experimental/theoretical waveforms mentioned in previous research. The proposed model is also compared with a recently developed semiempirical model of PEMFC through particle swarm optimisation. The proposed dynamic model may be used in future in‐depth studies on PEMFC behaviour and in dynamic applications for health monitoring and fault diagnosis.  相似文献   

16.
Fuel cell powered systems generally have a high current and a low voltage. Therefore, the output voltage of the fuel cell must be stepped-down using a DC-DC buck converter. However, since the fuel cell and converter have different dynamics, they must be suitably coordinated in order to satisfy the demanded load. Accordingly, this study commences by constructing a MATLAB/Simulink model of a proton exchange membrane fuel cell (PEMFC) system comprising a PEMFC stack, an air/fuel supply system, and a temperature control system. The validity of the PEMFC model is demonstrated by comparing the simulation results obtained for the polarzation curves of a single fuel cell with the corresponding experimental curves. A model is then constructed of the DC-DC buck converter used to step-down the PEMFC output voltage. In addition, a sliding mode control (SMC) scheme is proposed for the DC-DC buck converter which guarantees a low and stable output voltage given transient variations in the output voltage of the PEMFC. Finally, a model is constructed of a DC-AC inverter with a pulse width modulated (PWM) control scheme which enables the PEMFC stack to supply the grid or power AC applications directly. Overall, the combined PEMFC/DC-DC buck converter/DC-AC inverter model provides a powerful and versatile tool for the design and development of a wide range of PEMFC power systems.  相似文献   

17.
18.
The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R&D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests.  相似文献   

19.
Different operating scenarios can be used in a hybrid system based on a direct methanol fuel cell (DMFC) and a battery. In this paper, a DMFC system model is integrated into a model formed for a hybrid vehicular system that consists of a battery, a DMFC stack and its auxiliary equipments; and the model is simulated in Matlab/Simulink environment using a quasistatic approach. An algorithm for the energy management of the system is also developed considering the state of charge (SOC) of the battery. In the DMFC system model, the current and empirical data for the polarization curves as well as methanol crossover and water crossover rates are taken as the input parameters, whereas the stack voltage, the remaining methanol in the fuel tank, and the power demand of auxiliary equipments are taken as the output parameters. In this model, the methanol consumption, and the water and CO2 production are found applying mass balances for each component of the system. The results of the simulations help to give more insights into the operation of a DMFC based hybrid system.  相似文献   

20.
This research develops an efficient and robust polymer electrolyte membrane (PEM) fuel cell/battery hybrid operating system. The entire system possesses its own rapid dynamic response benefited from hybrid connection and power split characteristics due to DC/DC buck-boost converter. An indispensable energy management system (EMS) plays a significant role in achieving optimal fuel economy and in a promising running stability. EMS as an indispensable part plays a significant role in achieving optimal fuel economy and promising operation stability. This study aims to develop an adaptive supervisory EMS that comprises computer-aided engineering tools to monitor, control, and optimize the performance of the hybrid power system. A stationary fuel cell/battery hybrid operating system is optimized using adaptive-Pontryagin's minimum principle (A-PMP). The proposed algorithm depends on the adaptation of the control parameter (i.e., fuel cell output power) from the state of charge (SOC) and load power feedback. The integrated model simulated in a Matlab/Simulink environment includes the fuel cell, battery, DC/DC converter, and power requirements models by analyzing the three different load profiles. Real-time experiments are performed to verify the effectiveness of EMS after analyzing the simulated operating principle and control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号