首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mortaza Yari   《Renewable Energy》2010,35(1):112-121
Based on available surveys, it has been shown that Iran has substantial geothermal potential in the north and north-western provinces, where in some places the temperature reaches 240 °C. In order to better exploit these renewable resources, it is necessary to study this area. Thus, the aim of this paper is a comparative study of the different geothermal power plant concepts, based on the exergy analysis for high-temperature geothermal resources. The considered cycles for this study are a binary geothermal power plant using a simple organic Rankine cycle (ORC), a binary geothermal power plant using an ORC with an internal heat exchanger (IHE), a binary cycle with a regenerative ORC, a binary cycle with a regenerative ORC with an IHE, a single-flash geothermal power plant, a double-flash geothermal power plant and a combined flash-binary power plant. With respect to each cycle, a thermodynamic model had to be developed. Model validation was undertaken using available data from the literature. Based on the exergy analysis, a comparative study was done to clarify the best cycle configuration. The performance of each cycle has been discussed in terms of the second-law efficiency, exergy destruction rate, and first-law efficiency. Comparisons between the different geothermal power plant concepts as well as many approaches to define efficiencies have been presented. The maximum first-law efficiency was found to be related to the ORC with an IHE with R123 as the working fluid and was calculated to be 7.65%. In contrast, the first-law efficiency based on the energy input into the ORC revealed that the binary cycle with the regenerative ORC with an IHE and R123 as the working fluid has the highest efficiency (15.35%). Also, the maximum first-law efficiency was shown to be given by the flash-binary with R123 as the working fluid and was calculated to be 11.81%.  相似文献   

2.
One of the essential steps to design energy conversion-based systems is choosing an efficient working fluid under the design goals to access stable products with high efficiency and overcome environmental issues. In this regard, the current paper is motivated to devise and evaluate a novel geothermal-driven multigeneration system under the effect of various working fluids. The proposed system consists of a flash-binary geothermal power plant, an organic flash cycle (OFC), a power/cooling subsystem (an organic Rankine cycle (ORC) and a thermoelectric generator incorporated with a compression refrigeration cycle), and freshwater and hydrogen production units utilizing a humidification-dehumidification desalination unit and a low-temperature electrolyzer. Considering the design potential of the OFC and ORC, four different environmentally-friendly working fluids, i.e., R123 and R600 in the OFC and R1234yf and R1234ze(e) in the ORC are selected and classified in four groups to introduce the best one, under the energy, exergy, and economic (3E analysis) approaches. Also, the whole system is optimized through a genetic algorithm, respecting the optimal solution for the energy efficiency and unit exergy cost of the products. According to the results, R123/R1234ze(e) shows the highest cooling, hydrogen, freshwater production rates, and energy efficiency. Likewise, the maximum power generation and exergy efficiency belong to R600/R1234ze(e). Moreover, R600/R1234yf has the lowest unit exergy cost of products.  相似文献   

3.
采用(火用)分析方法及PR状态方程,建立了低温地热发电有机朗肯循环的工质优选及主要参数优化热力学方法.比较计算了以10种干流体有机工质为循环工质的低温地热发电有机朗肯循环的输出功率、(火用)效率及其余主要热力性能.结果表明,低温地热发电有机朗肯循环的性能极大地受工质的物性及蒸发温度的影响.总体来看,随着工质临界温度的升...  相似文献   

4.
针对现有有机朗肯循环单目标优化设计的局限性,从热力性、经济性等多方面对有机工质低温余热发电系统进行多目标优化设计.以系统效率最大和总投资费用最小为目标函数,选取透平进口温度、透平进口压力、余热锅炉节点温差、接近点温差和冷凝器端差等5个关键热力参数作为决策变量,利用非支配解排序遗传算法(NSGA-II)分别对采用R123、R245fa和异丁烷的有机工质余热发电系统进行多目标优化,获得不同工质的多目标优化的最优解集(Pareto最优前沿),并采用理想点辅助法从最优解集中选择出最优解及相应的系统最佳热力参数组合.结果表明:在给定余热条件下,从热力性能和经济性两方面考虑,R245fa是最优的有机工质,从多目标优化的最优解集中选择出的最佳效率为10.37%,最小总投资费用为455.84万元.  相似文献   

5.
Transcritical Rankine cycles using refrigerant R32 (CH2F2) and carbon dioxide (CO2) as the working fluids are studied for the conversion of low-grade heat into mechanical power. Compared to CO2, R32 has higher thermal conductivity and condenses easily. The energy and exergy analyses of the cycle with these two fluids shows that the R32-based transcritical Rankine cycle can achieve 12.6–18.7% higher thermal efficiency and works at much lower pressures. An analysis of the exergy destruction and losses as well as the exergy efficiency optimization of the transcritical Rankine cycle is conducted. Based on the analysis, an “ideal” working fluid for the transcritical Rankine cycle is conceived, and ideas are proposed to design working fluids that can approach the properties of an “ideal” working fluid.  相似文献   

6.
The present study considers a thermodynamic analysis and performance optimization of geothermal power cycles. The proposed binary‐cycles operate with moderately low temperature and liquid‐dominated geothermal resources in the range of 110°C to 160°C, and cooling air at ambient conditions of 25°C and 101.3 kPa reference temperature and atmospheric pressure, respectively. A thermodynamic optimization process and an irreversibility analysis were performed to maximize the power output while minimizing the overall exergy destruction and improving the First‐law and Second‐law efficiencies of the cycle. Maximum net power output was observed to increase exponentially with the geothermal resource temperature to yield 16–49 kW per unit mass flow rate of the geothermal fluid for the non‐regenerative organic Rankine cycles (ORCs), as compared with 8–34 kW for the regenerative cycles. The cycle First‐law efficiency was determined in the range of 8–15% for the investigated geothermal binary power cycles. Maximum Second‐law efficiency of approximately 56% was achieved by the ORC with an internal heat exchanger. In addition, a performance analysis of selected pure organic fluids such as R123, R152a, isobutane and n‐pentane, with boiling points in the range of ?24°C to 36°C, was conducted under saturation temperature and subcritical pressure operating conditions of the turbine. Organic fluids with higher boiling point temperature, such as n‐pentane, were recommended for non‐regenerative cycles. The regenerative ORCs, however, require organic fluids with lower vapour specific heat capacity (i.e. isobutane) for an optimal operation of the binary‐cycle. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This article examines the exhaust waste heat recovery potential of a microturbine (MT) using an organic Rankine cycle (ORC). Possible improvements in electric and exergy efficiencies as well as specific emissions by recovering waste heat from the MT exhaust gases are determined. Different dry organic working fluids are considered during the evaluation (R113, R123, R245fa, and R236fa). In general, it has been found that the use of an ORC to recover waste heat from MTs improves the combined electric and exergy efficiencies for all the evaluated fluids, obtaining increases of an average of 27% when the ORC was operated using R113 as the working fluid. It has also been found that higher ORC evaporator effectiveness values correspond to lower pinch point temperature differences and higher exergy efficiencies. Three different MT sizes were evaluated, and the results indicate that the energetic and exergetic performance as well as the reduction of specific emissions of a combined MT‐ORC is better for small MT power outputs than for larger MTs. This article also shows how the electric efficiency can be used to ascertain under which circumstances the use of a combined MT‐ORC will result in better cost, primary energy consumption, or emission reduction when compared with buying electricity directly from electric utilities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
不同工质对太阳能有机朗肯循环系统性能的影响   总被引:2,自引:1,他引:1  
韩中合  叶依林  刘贇 《动力工程》2012,32(3):229-234
循环工质的特性是影响有机朗肯循环系统性能的重要因素之一,在不同的蒸发温度条件下,选取R600、R600a、R245fa、R236fa、R236ea、R601、R601a、RC318及R227ea共9种有机工质,基于热力学第一定律和第二定律对其热力循环特性进行了计算分析,并对各有机工质的蒸发压力、热效率、功比和不可逆损失等进行了比较.结果表明:R245fa作为太阳能低温热发电朗肯循环系统的循环工质具有较高的热效率和效率,并且产生的系统总不可逆损失较小,是一种较理想的有机工质;其次,R236fa和R236ea作为系统循环工质也具有较为良好的性能.  相似文献   

9.
This study involves the design of a single flash cycle which comprises a separator, steam turbine, condenser and pump combined with Organic Rankine Cycle (ORC). The ORC has a three-stage heat exchanger. The mass flow rate of the organic fluid varies depending on the type of organic fluid. The system is heated by geothermal water. The effect of changing the geothermal water temperature [200–260°C] on performance parameters including the power output and overall efficiency has been studied. Four working fluids (n-Butane, Isobutane, R11 and R123) were chosen depending on their properties. The results show that a drop in the source temperature (T1) by 10% will result in 9.7% and 25.3% drop in overall efficiency and net power output for Isobutane. Also, Isobutane has a drop of 4.2% in both; overall efficiency and net power output for a 10% drop in pressure ratio (rp). R11 shows the highest overall efficiency and net power output (18.76% and 24.887 MW) respectively at the design point.  相似文献   

10.
本文对四川甘孜的一口地热井进行能量分析和?分析,参考该井地热水的温度115℃,采取的发电方式有单级闪蒸系统、预热有机朗肯系统、闪蒸有机朗肯联合系统。结果表明,闪蒸朗肯系统的?效率最高(47.81%),预热朗肯系统次之(46.31%),单级闪蒸系统最低(42.83%)。对于有机朗肯循环,发生器的影响因子及?损均为最大;而闪蒸部分,闪蒸罐的影响因子最高,但闪蒸朗肯系统将其?损减少64.8%,低于汽轮机。计算结果显示,提高闪蒸/发生温度能够提高效率、减少?损,而闪蒸朗肯系统中发生温度有较好的优化性能。综上所述,闪蒸有机朗肯联合系统具有最大的净功率(360.8 kW)和最高的?效率,而且尾水温度最低,热效率适中,适合用于中低温地热发电。  相似文献   

11.
我国的余热资源和可再生能源丰富,但部分余热资源和可再生能源分布比较分散,并存在温度和能量密度均较低的问题。基于传统能源转化技术,利用温度较低的余热资源和能量密度较低的可再生能源进行发电,会降低余热资源和可再生能源的热功转换效率。有机朗肯循环(ORC)系统可以有效利用低温热能进行发电。对于不同温度和形式的热源,采用合适的工质和循环工况,可以提高ORC系统的发电效率。有出口温度限制的热源是一种较为常见的热源形式,在ORC系统中增加回热装置可能会进一步提高热力循环对该类热源的利用效率。因此,文章针对有温度出口限制的热源,建立了亚临界ORC计算分析模型,选取了干流体和等熵流体作为循环工质,以热源回收?效率作为ORC系统的循环性能评价指标,系统地比较了不同回热度条件下ORC系统的循环性能。文章系统地分析了回热流程对ORC系统循环性能的影响规律,并将计算结果进行理论关联,首次建立了依据冷源和热源条件直接选取最佳回热度的定量准则。  相似文献   

12.
热源温度高于473.15 K时,复叠式有机朗肯循环(organic Rankine cycle,ORC)可避免高温下工质热分解、膨胀比过大等缺点,相对单级ORC更具优势.跨临界循环相较常规亚临界具有更高的吸热压力及更好的热源匹配性,其与复叠式ORC耦合有望获得更优的热力性能.因此,构建了跨临界-亚临界复叠式ORC(TS...  相似文献   

13.
罗向龙  徐乐  谭立锋  陈颖 《节能技术》2012,30(2):131-135,141
以低品位热能驱动的有机朗肯循环发电系统,是实现将低品位热能转变为电能,进而提高热力系统总体热效率,降低污染排放的有效途径之一。本文建立了低品位热能发电系统火用分析模型,对以R245fa为工质的温度低于383.15 K的低品位热能有机朗肯循环余热发电系统进行了火用分析,得到了各环节的能量转换效率并确定了对系统性能影响最大的环节;通过改变蒸发器和冷凝器的压降和传热系数值,分析了主要换热设备的设计和运行性能参数对系统火用效率、热效率和发电量的影响趋势,提出了低品位热能发电系统的优化方向。  相似文献   

14.
The analysis of a subcritical Rankine cycle with superheating, operating between a constant flowrate low‐temperature heat source and a fixed temperature sink, according to the principles of classical and finite size thermodynamics, is presented. The results show the existence of two optimum evaporation pressures: one minimizes the total thermal conductance of the two heat exchangers, whereas the other maximizes the net power output. A comparison of such results for five working fluids leads to the selection of R141b for a system generating 10% of a reference power which depends on the specified source and sink characteristics; for the conditions under consideration this reference power is 6861 kW. The results for this particular system show that the minimum total thermal conductance of the two heat exchangers is 1581 kW K?1; the corresponding thermal efficiency is 12.6% and the total exergy losses are 13.8% of the source's exergy. Slightly more than 50% of the exergy destruction occurs in the vapor generator. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The location of heat transfer pinch point in evaporator is the base of determining operating parameters of organic Rankine cycle (ORC). The physical mathematical model seeking the location of pinch point is established, by which, the temperature variations both of heat source and working fluid with UA can be obtained. Taking heat source with inlet temperature of 160 °C as example, the matching potentials between heat source and working fluid are revealed for subcritical and supercritical cycles with the determined temperature difference of pinch point. Thermal efficiency, exergy efficiency, work output per unit area and maximum work outputs are compared and analyzed based on the locations of heat transfer pinch point either. The results indicate that supercritical ORC has a better performance in thermal efficiency, exergy efficiency and work output while outlet temperature of heat source is low. Otherwise, subcritical performs better. Small heat transfer coefficient results in low value of work output per unit area for supercritical ORC. Introduction of IHX may reduce the optimal evaporating pressure, which has a great influence on heat source outlet temperature and superheat degree. The analysis may benefit the selection of operating parameters and control strategy of ORC.  相似文献   

16.
为节约及合理利用能源,提高城市能量总能系统利用率,基于有机朗肯循环(ORC)和冷热电联产(CCHP),提出了一种新型的城市低温地热冷热电联产系统(以下简称ORC-CCHP系统)。根据热力学第一、第二定律,建立了热力学模型,编写计算机程序进行了系统的热力性能分析。结果表明:采用R245fa、LiBr溶液作为ORCCCHP系统循环工质时,选择窄点温差较小蒸发器可获得更高火用效率;增加太阳能集/蓄热系统,提高热流参数,减小换热温差,可进一步提升系统热力学性能;系统分别采用5种不同有机工质时,R236fa使系统的热力性能达到最佳,并在蒸发压力为0. 62 MPa、窄点温差为0 K时,ORC-CCHP系统获得最大净输出功为1 948 kW,系统火用效率为19. 28%,系统火用效率最高值为85. 78%。  相似文献   

17.
This paper performed a comparative analysis of organic Rankine cycle (ORC) using different working fluids, in order to recover waste heat from a solid oxide fuel cell‐gas turbine hybrid power cycle. Depending on operating parameters, criteria for the choice of the working fluid were identified. Results reveal that due to a significant temperature glide of the exhaust gas, the actual ORC cycle thermal efficiency strongly depends on the turbine inlet temperature, exhaust gas temperature, and fluid's critical point temperature. When exhaust gas temperature varies in the range of 500 K to 600 K, R123 is preferred among the nine dry typical organic fluids because of the highest and most stabilized mean thermal efficiency under wide operating conditions and its reasonable condensing pressure and turbine outlet specific volume, which in turn results in a feasible ORC cycle for practical concerns. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Theoretical analyses of natural and conventional working fluids‐based transcritical Rankine power cycles driven by low‐temperature geothermal sources have been carried out with the methodology of pinch point analysis using computer models. The regenerator has been introduced and analyzed with a modified methodology considering the considerable variation of specific heat with temperature near the critical state. The evaluations of transcritical Rankine cycles have been performed based on equal thermodynamic mean heat rejection temperature and optimized gas heater pressures at various geothermal source temperature levels ranging from 80 to 120°C. The performances of CO2, a natural working fluid most commonly used in a transcritical power cycle, have been indicated as baselines. The results obtained show: optimum thermodynamic mean heat injection temperatures of transcritical Rankine cycles are distributed in the range of 60 to 70% of given geothermal source temperature level; optimum gas heater pressures of working fluids considered are lower than baselines; thermal efficiencies and expansion ratios (Expr) are higher than baselines while net power output, volume flow rate at turbine inlet (V1) and heat transfer capacity curves are distributed at both sides of baselines. From thermodynamic and techno‐economic point of view, R125 presents the best performances. It shows 10% higher net power output, 3% lower V1, 1.0 time higher Expr, and 22% reduction of total heat transfer areas compared with baselines given geothermal source temperature of 90°C. With the geothermal source temperature above 100°C, R32 and R143a also show better performances. R170 shows nearly the same performances with baselines except for the higher V1 value. It also shows that better temperature gliding match between fluids in the gas heater can lead to more net power output. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The organic rankine cycle (ORC) as a bottoming cycle1 to convert low-grade waste heat into useful work has been widely investigated for many years. The CO2 transcritical power cycle, on the other hand, is scarcely treated in the open literature. A CO2 transcritical power cycle (CO2 TPC) shows a higher potential than an ORC when taking the behavior of the heat source and the heat transfer between heat source and working fluid in the main heat exchanger into account. This is mainly due to better temperature glide matching between heat source and working fluid. The CO2 cycle also shows no pinch limitation in the heat exchanger. This study treats the performance of the CO2 transcritical power cycle utilizing energy from low-grade waste heat to produce useful work in comparison to an ORC using R123 as working fluid.Due to the temperature gradients for the heat source and heat sink the thermodynamic mean temperature has been used as a reference temperature when comparing both cycles. The thermodynamic models have been developed in EES2 The relative efficiencies have been calculated for both cycles. The results obtained show that when utilizing the low-grade waste heat with the same thermodynamic mean heat rejection temperature, a transcritical carbon dioxide power system gives a slightly higher power output than the organic rankine cycle.  相似文献   

20.
The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号