首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
目的 近年来,卷积神经网络在解决图像超分辨率的问题上取得了巨大成功,不同结构的网络模型相继被提出。通过学习,这些网络模型对输入图像的特征进行抽象、组合,进而建立了从低分辨率的输入图像到高分辨率的目标图像的有效非线性映射。在该过程中,无论是图像的低阶像素级特征,还是高阶各层抽象特征,都对像素间相关性的挖掘起了重要作用,影响着目标高分辨图像的性能。而目前典型的超分辨率网络模型,如SRCNN(super-resolution convolutional neural network)、VDSR(very deep convolutional networks for super-resolution)、LapSRN(Laplacian pyramid super-resolution networks)等,都未充分利用这些多层次的特征。方法 提出一种充分融合网络多阶特征的图像超分辨率算法:该模型基于递归神经网络,由相同的单元串联构成,单元间参数共享;在每个单元内部,从低阶到高阶的逐级特征被级联、融合,以获得更丰富的信息来强化网络的学习能力;在训练中,采用基于残差的策略,单元内使用局部残差学习,整体网络使用全局残差学习,以加快训练速度。结果 所提出的网络模型在通用4个测试集上,针对分辨率放大2倍、3倍、4倍的情况,与深层超分辨率网络VDSR相比,平均分别能够获得0.24 dB、0.23 dB、0.19 dB的增益。结论 实验结果表明,所提出的递归式多阶特征融合图像超分辨率算法,有效提升了性能,特别是在细节非常丰富的Urban100数据集上,该算法对细节的处理效果尤为明显,图像的客观质量与主观质量都得到显著改善。  相似文献   

2.
目的 随着深度卷积神经网络的兴起,图像超分重建算法在精度与速度方面均取得长足进展。然而,目前多数超分重建方法需要较深的网络才能取得良好性能,不仅训练难度大,而且到网络末端浅层特征信息容易丢失,难以充分捕获对超分重建起关键作用的高频细节信息。为此,本文融合多尺度特征充分挖掘超分重建所需的高频细节信息,提出了一种全局注意力门控残差记忆网络。方法 在网络前端特征提取部分,利用单层卷积提取浅层特征信息。在网络主体非线性映射部分,级联一组递归的残差记忆模块,每个模块融合多个递归的多尺度残差单元和一个全局注意力门控模块来输出具备多层级信息的特征表征。在网络末端,并联多尺度特征并通过像素重组机制实现高质量的图像放大。结果 本文分别在图像超分重建的5个基准测试数据集(Set5、Set14、B100、Urban100和Manga109)上进行评估,在评估指标峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上相比当前先进的网络模型均获得更优性能,尤其在Manga109测试数据集上本文算法取得的PSNR结果达到39.19 dB,相比当前先进的轻量型算法AWSRN(adaptive weighted super-resolution network)提高0.32 dB。结论 本文网络模型在对低分图像进行超分重建时,能够联合学习网络多层级、多尺度特征,充分挖掘图像高频信息,获得高质量的重建结果。  相似文献   

3.
目的 将低分辨率(low-resolution,LR)图像映射到高分辨率(high-resolution,HR)图像是典型的不适定恢复问题,即输出的HR图像和输入的LR图像之间的映射是多对一的,这意味着仅通过增加网络深度来确定HR图像与LR图像之间的特定映射关系是非常困难的。针对该问题,本文提出一种基于多监督光滑化损失函数的图像超分辨率方法。方法 该方法主体由LR图像上采样通道和HR图像下采样通道两部分组成。各通道分为两个阶段,每个阶段均包括浅层特征提取模块、基于迭代采样错误反馈机制的采样模块、全局特征融合模块和图像重建模块。将LR图像上采样通道第1阶段结果与HR图像下采样通道第1阶段结果对比,然后将HR原图像和HR图像下采样通道第2阶段结果作为约束构成多监督,使映射函数空间尽可能精确,并将多监督损失函数光滑化保证梯度在全局范围内传递。结果 在基准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)、Urban100(urban scenes dataset)、Manga109(109 manga volumes dataset)数据集上进行测试,并与Bicubic、SRCNN (super-resolution convolutional neural network)、FSRCNN (fast super-resolution convolutional neural network)、LapSRN (Laplacian pyramid super-resolution network)、VDSR (very deep super-resolution convolutional networks)、DBPN (deep back-projection networks for super-resolution)和DRN (dual regression networks)等方法的实验结果进行对比。当放大因子为4时,本文算法的峰值信噪比分别为32.29 dB、28.85 dB、27.61 dB、26.16 dB和30.87 dB;在重建图像的可视化分析方面,本文算法相较于对比算法具有更加丰富的纹理和清晰的轮廓。结论 实验结果表明,基于多监督光滑化损失函数方法的图像重建结果与其他超分辨率主流算法相比,在重建图像质量和高频细节处理方面均有所提高。  相似文献   

4.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

5.
目的 通道注意力机制在图像超分辨率中已经得到了广泛应用,但是当前多数算法只能在通道层面选择感兴趣的特征图而忽略了空间层面的信息,使得特征图中局部空间层面上的信息不能合理利用。针对此问题,提出了区域级通道注意力下的图像超分辨率算法。方法 设计了非局部残差密集网络作为网络的主体结构,包括非局部模块和残差密集注意力模块。非局部模块提取非局部相似信息并传到后续网络中,残差密集注意力模块在残差密集块结构的基础上添加了区域级通道注意力机制,可以给不同空间区域上的通道分配不同的注意力,使空间上的信息也能得到充分利用。同时针对当前普遍使用的L1和L2损失函数容易造成生成结果平滑的问题,提出了高频关注损失,该损失函数提高了图像高频细节位置上损失的权重,从而在后期微调过程中使网络更好地关注到图像的高频细节部分。结果 在4个标准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100上进行4倍放大实验,相比较于插值方法和SRCNN(image super-resolution using deep convolutional networks)算法,本文方法的PSNR(peak signal to noise ratio)均值分别提升约3.15 dB和1.58 dB。结论 区域级通道注意力下的图像超分辨率算法通过使用区域级通道注意力机制自适应调整网络对不同空间区域上通道的关注程度,同时结合高频关注损失加强对图像高频细节部分的关注程度,使生成的高分辨率图像具有更好的视觉效果。  相似文献   

6.
目的 图像逆半色调的目的是从二值半色调图像中恢复出连续色调图像。半色调图像丢失了大量原始图像内容信息,因此逆半色调成为一个经典的图像重建病态问题。现有的逆半色调算法重建效果无法满足对图像细节和纹理的需求。此外,已有方法大多忽略了训练策略对模型优化的重要影响,导致模型性能较差。针对上述问题,提出一个逆半色调网络以提高半色调图像重建质量。方法 首先提出一个端到端的多尺度渐进式残差学习网络(multiscale progressivoly residual learning network,MSPRL)以恢复出更高质量的连续色调图像。该网络基于UNet架构并以多尺度图像作为输入;为充分利用不同尺度输入图像的信息,设计一个浅层特征提取模块以捕获多尺度图像的注意力信息;同时探讨不同学习策略对模型训练和性能的影响。结果 实验在7个数据集上与6种方法进行对比。在Place365和Kodak数据集上,相比性能第2的方法,峰值信噪比(peak signal-to-noise ratio,PSNR)分别提高0.12dB和0.18dB;在其他5个常用于图像超分辨率的测试数据集Set5、Set14、BSD100(Berkeley segmentation dataset 100)、Urban100和Manga109上,相比性能第2的方法,PSNR值分别提高0.11dB、0.25dB、0.08dB、0.39dB和0.35dB。基于本文的训练策略,重新训练的渐进式残差学习网络相比未优化训练模型在7个数据集上PSNR平均提高1.44dB。本文方法在图像细节和纹理重建上实现最优效果。实验表明选用合适的学习策略能够优化模型训练,对性能提升具有重要帮助。结论 本文提出的逆半色调模型,综合UNet架构和多尺度图像信息的优点,选用合适的训练策略,使得图像重建的细节与纹理更加清晰,视觉效果更加细致。本文算法代码公布在https://github.com/Feiyuli-cs/MSPRL。  相似文献   

7.
目的 东巴画具有内容丰富、线条疏密相间、色彩多样的独特艺术风格,将现有针对自然图像的超分辨率算法直接应用于低分辨率东巴画时,对东巴画线条、色块以及材质的重建效果不理想。为了有效提高东巴画数字图像分辨率,本文针对东巴画提出超分辨率重建方法。方法 首先,针对东巴画图像包含丰富高频信息的特点搭建重建网络,网络整体结构采用多级子网络级联方式渐进地重建出高分辨率东巴画,多级子网络标签共同指导重建,减少了东巴画图像在上采样过程中高频细节的丢失,每一级子网络内部均包含浅层特征提取模块和以残差密集结构为核心的深层特征提取模块,分别提取东巴画不同层次的特征进行融合,改善了卷积层简单的链式堆叠造成的特征丢失。其次,为了进一步提升重建东巴画的视觉质量,在像素损失的基础上引入感知损失和对抗损失进行对抗训练。最后,为了使网络对东巴画图像特征的学习更具针对性,本文自建东巴画数据集用于网络训练。结果 实验结果表明,在本文东巴画测试集set20上,当上采样因子为8时,相较于Bicubic(bicubic interpolation)、SRCNN(super-resolution convolutional neural network)、Srresnet(super-resolution residual network)和IMDN(information multi-distillation network)方法,本文算法的峰值信噪比分别增加了3.28 dB、1.80 dB、0.23 dB和0.36 dB,重建东巴画的主观视觉质量也得到了更好的结果。结论 本文提出的超分辨率网络模型能有效提高低分辨率东巴画的分辨率和清晰度,并且具有普适性,亦可采用其他数据集进行训练以拓展应用范围。  相似文献   

8.
目的 基于学习的图像超分辨率重建方法已成为近年来图像超分辨率重建研究的热点。针对基于卷积神经网络的图像超分辨率重建(SRCNN)方法网络层少、感受野小、泛化能力差等缺陷,提出了基于中间层监督卷积神经网络的图像超分辨率重建方法,以进一步提高图像重建的质量。方法 设计了具有中间层监督的卷积神经网络结构,该网络共有16层卷积层,其中第7层为中间监督层;定义了监督层误差函数和重建误差函数,用于改善深层卷积神经网络梯度消失现象。训练网络时包括图像预处理、特征提取和图像重建3个步骤,采用不同尺度因子(2、3、4)模糊的低分辨率图像交叉训练网络,以适应对不同模糊程度的图像重建;使用卷积操作提取图像特征时将参数pad设置为1,提高了对图像和特征图的边缘信息利用;利用残差学习完成高分辨率图像重建。结果 在Set5和Set14数据集上进行了实验,并和双三次插值、A+、SelfEx和SRCNN等方法的结果进行比较。在主观视觉评价方面,本文方法重建图像的清晰度和边缘锐度更好。客观评价方面,本文方法的峰值信噪比(PSNR)平均分别提高了2.26 dB、0.28 dB、0.28 dB和0.15 dB,使用训练好的网络模型重建图像耗用的时间不及SRCNN方法的一半。结论 实验结果表明,本文方法获得了更好的主观视觉评价和客观量化评价,提升了图像超分辨率重建质量,泛化能力好,而且图像重建过程耗时更短,可用于自然场景图像的超分辨率重建。  相似文献   

9.
目的 单幅图像超分辨率重建的深度学习算法中,大多数网络都采用了单一尺度的卷积核来提取特征(如3×3的卷积核),往往忽略了不同卷积核尺寸带来的不同大小感受域的问题,而不同大小的感受域会使网络注意到不同程度的特征,因此只采用单一尺度的卷积核会使网络忽略了不同特征图之间的宏观联系。针对上述问题,本文提出了多层次感知残差卷积网络(multi-level perception residual convolutional network,MLP-Net,用于单幅图像超分辨率重建)。方法 通过特征提取模块提取图像低频特征作为输入。输入部分由密集连接的多个多层次感知模块组成,其中多层次感知模块分为浅层多层次特征提取和深层多层次特征提取,以确保网络既能注意到图像的低级特征,又能注意到高级特征,同时也能保证特征之间的宏观联系。结果 实验结果采用客观评价的峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)两个指标,将本文算法其他超分辨率算法进行了对比。最终结果表明本文算法在4个基准测试集上(Set5、Set14、Urban100和BSD100(Berkeley Segmentation Dataset))放大2倍的平均峰值信噪比分别为37.851 1 dB,33.933 8 dB,32.219 1 dB,32.148 9 dB,均高于其他几种算法的结果。结论 本文提出的卷积网络采用多尺度卷积充分提取分层特征中的不同层次特征,同时利用低分辨率图像本身的结构信息完成重建,并取得不错的重建效果。  相似文献   

10.
目的 近几年应用在单幅图像超分辨率重建上的深度学习算法都是使用单种尺度的卷积核提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏。另外,为了获得更好的图像超分辨率重建效果,网络模型也不断被加深,伴随而来的梯度消失问题会使得训练时间延长,难度加大。针对当前存在的超分辨率重建中的问题,本文结合GoogleNet思想、残差网络思想和密集型卷积网络思想,提出一种多尺度密集残差网络模型。方法 本文使用3种不同尺度卷积核对输入的低分辨率图像进行卷积处理,采集不同卷积核下的底层特征,这样可以较多地提取低分辨率图像中的细节信息,有利于图像恢复。再将采集的特征信息输入残差块中,每个残差块都包含了多个由卷积层和激活层构成的特征提取单元。另外,每个特征提取单元的输出都会通过短路径连接到下一个特征提取单元。短路径连接可以有效地缓解梯度消失现象,加强特征传播,促进特征再利用。接下来,融合3种卷积核提取的特征信息,经过降维处理后与3×3像素的卷积核提取的特征信息相加形成全局残差学习。最后经过重建层,得到清晰的高分辨率图像。整个训练过程中,一幅输入的低分辨率图像对应着一幅高分辨率图像标签,这种端到端的学习方法使得训练更加迅速。结果 本文使用两个客观评价标准PSNR(peak signal-to-noise ratio)和SSIM(structural similarity index)对实验的效果图进行测试,并与其他主流的方法进行对比。最终的结果显示,本文算法在Set5等多个测试数据集中的表现相比于插值法和SRCNN算法,在放大3倍时效果提升约3.4 dB和1.1 dB,在放大4倍时提升约3.5 dB和1.4 dB。结论 实验数据以及效果图证明本文算法能够较好地恢复低分辨率图像的边缘和纹理信息。  相似文献   

11.
目的 现有医学图像超分辨率方法主要针对单一模态图像进行设计,然而在磁共振成像(magnetic resonance imaging, MRI)技术的诸多应用场合,往往需要采集不同成像参数下的多模态图像。针对单一模态的方法无法利用不同模态图像之间的关联信息,很大程度上限制了重建性能。目前超分辨率网络模型参数量往往较大,导致计算和存储代价较高。为此,本文提出了一个轻量级残差密集注意力网络,以一个统一的网络模型同时实现多模态MR图像的超分辨率重建。方法 首先将不同模态的MR图像堆叠后输入网络,在低分辨率空间中提取共有特征,之后采用设计的残差密集注意力模块进一步精炼特征,再通过一个亚像素卷积层上采样到高分辨率空间,最终分别重建出不同模态的高分辨率图像。结果 本文采用MICCAI (medical image computing and computer assisted intervention) BraTS (brain tumor segmentation) 2019数据集中的T1和T2加权MR图像对网络进行训练和测试,并与8种代表性超分辨率方法进行对比。实验结果表明,本文方法可以取得优于...  相似文献   

12.
目的 针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法 网络主要由预处理模块、多尺度特征复用混合注意力模块、上采样模块、补偿重建模块和重建模块5部分组成。第1部分是预处理模块,该模块使用一个卷积层来提取浅层特征和扩张特征图的通道数。第2部分是多尺度特征复用混合注意力模块,该模块加入了多路网路、混合注意力机制和长短跳连接,以此来进一步扩大特征图的感受野、提高多尺度特征的复用和加强高频信息的重建。第3部分是上采样模块,该模块使用亚像素方法将特征图上采样到目标图像尺寸。第4部分是补偿重建模块,该模块由卷积层和混合注意力机制组成,用来对经过上采样的特征图进行特征补偿和稳定模型训练。第5部分是重建模块,该模块由一个卷积层组成,用来将特征图的通道数恢复至原来数量,以此得到重建后的高分辨率图像。结果 在同等规模模型的比较中,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index measure,SSIM)作为评价指标来评价算法性能,在Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100的基准测试集上进行测试。当缩放尺度因子为3时,各测试集上的PSNR/SSIM依次为34.40 dB/0.927 3,30.35 dB/0.842 7,29.11 dB/0.805 2和28.23 dB/0.854 0,相比其他模型有一定提升。结论 量化和视觉的实验结果表明,本文模型重建得到的高分辨率图像不仅在重建边缘和纹理信息有很好的改善,而且在PSNR和SSIM客观评价指标上也有一定的提高。  相似文献   

13.
目的 基于深度学习的图像超分辨率重构研究取得了重大进展,如何在更好提升重构性能的同时,有效降低重构模型的复杂度,以满足低成本及实时应用的需要,是该领域研究关注的重要问题。为此,提出了一种基于通道注意力(channel attention,CA)嵌入的Transformer图像超分辨率深度重构方法(image super-resolution with channelattention-embedded Transformer,CAET)。方法 提出将通道注意力自适应地嵌入Transformer变换特征及卷积运算特征,不仅可充分利用卷积运算与Transformer变换在图像特征提取的各自优势,而且将对应特征进行自适应增强与融合,有效改进网络的学习能力及超分辨率性能。结果 基于5个开源测试数据集,与6种代表性方法进行了实验比较,结果显示本文方法在不同放大倍数情形下均有最佳表现。具体在4倍放大因子时,比较先进的SwinIR (image restoration using swin Transformer)方法,峰值信噪比指标在Urban100数据集上得到了0.09 dB的提升,在Manga109数据集提升了0.30 dB,具有主观视觉质量的明显改善。结论 提出的通道注意力嵌入的Transformer图像超分辨率方法,通过融合卷积特征与Transformer特征,并自适应嵌入通道注意力特征增强,可以在较好地平衡网络模型轻量化同时,得到图像超分辨率性能的有效提升,在多个公共实验数据集的测试结果验证了本文方法的有效性。  相似文献   

14.
目的 深度卷积网络在图像超分辨率重建领域具有优异性能,越来越多的方法趋向于更深、更宽的网络设计。然而,复杂的网络结构对计算资源的要求也越来越高。随着智能边缘设备(如智能手机)的流行,高效能的超分重建算法有着巨大的实际应用场景。因此,本文提出一种极轻量的高效超分网络,通过循环特征选择单元和参数共享机制,不仅大幅降低了参数量和浮点运算次数(floating point operations,FLOPs),而且具有优异的重建性能。方法 本文网络由浅层特征提取、深层特征提取和上采样重建3部分构成。浅层特征提取模块包含一个卷积层,产生的特征循环经过一个带有高效通道注意力模块的特征选择单元进行非线性映射提取出深层特征。该特征选择单元含有多个卷积层的特征增强模块,通过保留每个卷积层的部分特征并在模块末端融合增强层次信息。通过高效通道注意力模块重新调整各通道的特征。借助循环机制(循环6次)可以有效提升性能且大幅减少参数量。上采样重建通过参数共享的上采样模块同时将浅层与深层特征进放大、融合得到高分辨率图像。结果 与先进的轻量级网络进行对比,本文网络极大减少了参数量和FLOPs,在Set5、Set14、B100、Urban100和Manga109等基准测试数据集上进行定量评估,在图像质量指标峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上也获得了更好的结果。结论 本文通过循环的特征选择单元有效挖掘出图像的高频信息,并通过参数共享机制极大减少了参数量,实现了轻量的高质量超分重建。  相似文献   

15.
梁敏  王昊榕  张瑶  李杰 《计算机应用》2021,41(5):1438-1444
针对深层网络架构的图像超分辨率重建任务中存在网络参数多、计算复杂度高等问题,提出了一种基于加速残差网络的图像超分辨率重建方法。首先,构建一个残差网络对低分辨率图像与高分辨率图像之间的高频残差信息进行重建,以减少冗余信息的深层网络传输过程,提高重建效率;然后,通过特征收缩层对提取的低分辨率特征图进行降维,从而以较少的网络参数实现快速映射;之后,对高分辨率特征图通过特征扩展层进行升维,从而以较丰富的信息重建高频残差信息;最后,将残差与低分辨率图像求和得到重建的高分辨率图像。实验结果表明,该方法取得的峰值信噪比(PSNR)及结构相似性(SSIM)均值结果较基于卷积神经网络的图像超分辨率(SRCNN)取得的结果分别提升了0.57 dB和0.013 3,较基于中间层监督卷积神经网络的图像超分辨率重建(ISCNN)取得的结果分别提升了0.45 dB和0.006 7;在重建速度方面,以数据集Urban100为例,较现有方法提高了1.5~42倍。此外,将该方法应用于运动模糊图像的超分辨率重建时,获得了优于超深卷积神经网络的图像超分辨率(VDSR)的性能。所提方法以较少的网络参数快速获得较好的重建质量,并且为图像超分辨率重建提供了新的思路。  相似文献   

16.
目的 针对基于学习的图像超分辨率重建算法中存在边缘信息丢失、易产生视觉伪影等问题,提出一种基于边缘增强的深层网络模型用于图像的超分辨率重建。方法 本文算法首先利用预处理网络提取输入低分辨率图像的低级特征,然后将其分别输入到两路网络,其中一路网络通过卷积层级联的卷积网络得到高级特征,另一路网络通过卷积网络和与卷积网络成镜像结构的反卷积网络的级联实现图像边缘的重建。最后,利用支路连接将两路网络的结果进行融合,并将其结果通过一个卷积层从而得到最终重建的具有边缘增强效果的高分辨率图像。结果 以峰值信噪比(PSNR)和结构相似度(SSIM)作为评价指标来评价算法性能,在Set5、Set14和B100等常用测试集上放大3倍情况下进行实验,并且PSNR/SSIM指标分别取得了33.24 dB/0.9156、30.60 dB/0.852 1和28.45 dB/0.787 3的结果,相比其他方法有很大提升。结论 定量与定性的实验结果表明,基于边缘增强的深层网络的图像超分辨重建算法所重建的高分辨率图像不仅在重建图像边缘信息方面有较好的改善,同时也在客观评价和主观视觉上都有很大提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号