首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 165 毫秒
1.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

2.
目的 随着深度卷积神经网络的兴起,图像超分重建算法在精度与速度方面均取得长足进展。然而,目前多数超分重建方法需要较深的网络才能取得良好性能,不仅训练难度大,而且到网络末端浅层特征信息容易丢失,难以充分捕获对超分重建起关键作用的高频细节信息。为此,本文融合多尺度特征充分挖掘超分重建所需的高频细节信息,提出了一种全局注意力门控残差记忆网络。方法 在网络前端特征提取部分,利用单层卷积提取浅层特征信息。在网络主体非线性映射部分,级联一组递归的残差记忆模块,每个模块融合多个递归的多尺度残差单元和一个全局注意力门控模块来输出具备多层级信息的特征表征。在网络末端,并联多尺度特征并通过像素重组机制实现高质量的图像放大。结果 本文分别在图像超分重建的5个基准测试数据集(Set5、Set14、B100、Urban100和Manga109)上进行评估,在评估指标峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上相比当前先进的网络模型均获得更优性能,尤其在Manga109测试数据集上本文算法取得的PSNR结果达到39.19 dB,相比当前先进的轻量型算法AWSRN(adaptive weighted super-resolution network)提高0.32 dB。结论 本文网络模型在对低分图像进行超分重建时,能够联合学习网络多层级、多尺度特征,充分挖掘图像高频信息,获得高质量的重建结果。  相似文献   

3.
目的 单幅图像超分辨率重建的深度学习算法中,大多数网络都采用了单一尺度的卷积核来提取特征(如3×3的卷积核),往往忽略了不同卷积核尺寸带来的不同大小感受域的问题,而不同大小的感受域会使网络注意到不同程度的特征,因此只采用单一尺度的卷积核会使网络忽略了不同特征图之间的宏观联系。针对上述问题,本文提出了多层次感知残差卷积网络(multi-level perception residual convolutional network,MLP-Net,用于单幅图像超分辨率重建)。方法 通过特征提取模块提取图像低频特征作为输入。输入部分由密集连接的多个多层次感知模块组成,其中多层次感知模块分为浅层多层次特征提取和深层多层次特征提取,以确保网络既能注意到图像的低级特征,又能注意到高级特征,同时也能保证特征之间的宏观联系。结果 实验结果采用客观评价的峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)两个指标,将本文算法其他超分辨率算法进行了对比。最终结果表明本文算法在4个基准测试集上(Set5、Set14、Urban100和BSD100(Berkeley Segmentation Dataset))放大2倍的平均峰值信噪比分别为37.851 1 dB,33.933 8 dB,32.219 1 dB,32.148 9 dB,均高于其他几种算法的结果。结论 本文提出的卷积网络采用多尺度卷积充分提取分层特征中的不同层次特征,同时利用低分辨率图像本身的结构信息完成重建,并取得不错的重建效果。  相似文献   

4.
目的 针对口罩遮挡的人脸姿态分类新需求,为了提高基于卷积神经网络的人脸姿态分类效率和准确率,提出了一个轻量级卷积神经网络用于口罩人脸姿态分类。方法 本文设计的轻量级卷积神经网络的核心为双尺度可分离注意力卷积单元。该卷积单元由3×3和5×5两个尺度的深度可分离卷积并联而成,并且将卷积块注意力模块(convolutional block attention module,CBAM)的空间注意力模块(spatial attention module,SAM)和通道注意力模块(channel attention module,CAM)分别嵌入深度(depthwise,DW)卷积和点(pointwise,PW)卷积中,针对性地对DW卷积及PW卷积的特征图进行调整。同时对SAM模块补充1×1的点卷积挤压结果增强其对空间信息的利用,形成更加有效的注意力图。在保证模型性能的前提下,控制构建网络的卷积单元通道数和单元数,并丢弃全连接层,采用卷积层替代,进一步轻量化网络模型。结果 实验结果表明,本文模型的准确率较未改进SAM模块分离嵌入CBAM的模型、标准方式嵌入CBAM的模型和未嵌入注意力模块的模型分别提升了2.86%、6.41% 和12.16%。采用双尺度卷积核丰富特征,在有限的卷积单元内增强特征提取能力。与经典卷积神经网络对比,本文设计的模型仅有1.02 MB的参数量和24.18 MB的每秒浮点运算次数(floating-point operations per second,FLOPs),大幅轻量化了模型并能达到98.57%的准确率。结论 本文设计了一个轻量高效的卷积单元构建网络模型,该模型具有较高的准确率和较低的参数量及计算复杂度,提高了口罩人脸姿态分类模型的效率和准确率。  相似文献   

5.
目的 针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法 网络主要由预处理模块、多尺度特征复用混合注意力模块、上采样模块、补偿重建模块和重建模块5部分组成。第1部分是预处理模块,该模块使用一个卷积层来提取浅层特征和扩张特征图的通道数。第2部分是多尺度特征复用混合注意力模块,该模块加入了多路网路、混合注意力机制和长短跳连接,以此来进一步扩大特征图的感受野、提高多尺度特征的复用和加强高频信息的重建。第3部分是上采样模块,该模块使用亚像素方法将特征图上采样到目标图像尺寸。第4部分是补偿重建模块,该模块由卷积层和混合注意力机制组成,用来对经过上采样的特征图进行特征补偿和稳定模型训练。第5部分是重建模块,该模块由一个卷积层组成,用来将特征图的通道数恢复至原来数量,以此得到重建后的高分辨率图像。结果 在同等规模模型的比较中,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index measure,SSIM)作为评价指标来评价算法性能,在Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100的基准测试集上进行测试。当缩放尺度因子为3时,各测试集上的PSNR/SSIM依次为34.40 dB/0.927 3,30.35 dB/0.842 7,29.11 dB/0.805 2和28.23 dB/0.854 0,相比其他模型有一定提升。结论 量化和视觉的实验结果表明,本文模型重建得到的高分辨率图像不仅在重建边缘和纹理信息有很好的改善,而且在PSNR和SSIM客观评价指标上也有一定的提高。  相似文献   

6.
目的 图像超分辨率重建的目的是将低分辨率图像复原出具有更丰富细节信息的高分辨率图像。近年来,基于Transformer的深度神经网络在图像超分辨率重建领域取得了令人瞩目的性能,然而,这些网络往往参数量巨大、计算成本较高。针对该问题,设计了一种轻量级图像超分辨率重建网络。方法 提出了一种轻量级图像超分辨率的蓝图可分离卷积Transformer网络(blueprint separable convolution Transformer network,BSTN)。基于蓝图可分离卷积(blueprint separable convolution,BSConv)设计了蓝图前馈神经网络和蓝图多头自注意力模块。然后设计了移动通道注意力模块(shift channel attention block,SCAB)对通道重点信息进行加强,包括移动卷积、对比度感知通道注意力和蓝图前馈神经网络。最后设计了蓝图多头自注意力模块(blueprint multi-head self-attention block,BMSAB),通过蓝图多头自注意力与蓝图前馈神经网络以较低的计算量实现了自注意力过程。结果 本文方法在4个数据集上与10种先进的轻量级超分辨率方法进行比较。客观上,本文方法在不同数据集上取得了不同程度的领先,并且参数量和浮点运算量都处于较低水平。当放大倍数分别为2、3和4时,在Set5数据集上相比SOTA(state-of-theart)方法,峰值信噪比(peak signal to noise ratio,PSNR)分别提升了0.11dB、0.16dB和0.17dB。主观上,本文方法重建图像清晰,模糊区域小,具有丰富的细节。结论 本文所提出的蓝图可分离卷积Transformer网络BSTN以较少的参数量和浮点运算量达到了先进水平,能获得高质量的超分辨率重建结果。  相似文献   

7.
目的 近年来,深度卷积神经网络成为单帧图像超分辨率重建任务中的研究热点。针对多数网络结构均是采用链式堆叠方式使得网络层间联系弱以及分层特征不能充分利用等问题,提出了多阶段融合网络的图像超分辨重建方法,进一步提高重建质量。方法 首先利用特征提取网络得到图像的低频特征,并将其作为两个子网络的输入,其一通过编码网络得到低分辨率图像的结构特征信息,其二通过阶段特征融合单元组成的多路径前馈网络得到高频特征,其中融合单元将网络连续几层的特征进行融合处理并以自适应的方式获得有效特征。然后利用多路径连接的方式连接不同的特征融合单元以增强融合单元之间的联系,提取更多的有效特征,同时提高分层特征的利用率。最后将两个子网络得到的特征进行融合后,利用残差学习完成高分辨图像的重建。结果 在4个基准测试集Set5、Set14、B100和Urban100上进行实验,其中放大规模为4时,峰值信噪比分别为31.69 dB、28.24 dB、27.39 dB和25.46 dB,相比其他方法的结果具有一定提升。结论 本文提出的网络克服了链式结构的弊端,通过充分利用分层特征提取更多的高频信息,同时利用低分辨率图像本身携带的结构特征信息共同完成重建,并取得了较好的重建效果。  相似文献   

8.
目的 针对基于学习的图像超分辨率重建算法中存在边缘信息丢失、易产生视觉伪影等问题,提出一种基于边缘增强的深层网络模型用于图像的超分辨率重建。方法 本文算法首先利用预处理网络提取输入低分辨率图像的低级特征,然后将其分别输入到两路网络,其中一路网络通过卷积层级联的卷积网络得到高级特征,另一路网络通过卷积网络和与卷积网络成镜像结构的反卷积网络的级联实现图像边缘的重建。最后,利用支路连接将两路网络的结果进行融合,并将其结果通过一个卷积层从而得到最终重建的具有边缘增强效果的高分辨率图像。结果 以峰值信噪比(PSNR)和结构相似度(SSIM)作为评价指标来评价算法性能,在Set5、Set14和B100等常用测试集上放大3倍情况下进行实验,并且PSNR/SSIM指标分别取得了33.24 dB/0.9156、30.60 dB/0.852 1和28.45 dB/0.787 3的结果,相比其他方法有很大提升。结论 定量与定性的实验结果表明,基于边缘增强的深层网络的图像超分辨重建算法所重建的高分辨率图像不仅在重建图像边缘信息方面有较好的改善,同时也在客观评价和主观视觉上都有很大提高。  相似文献   

9.
目的 基于学习的图像超分辨率重建方法已成为近年来图像超分辨率重建研究的热点。针对基于卷积神经网络的图像超分辨率重建(SRCNN)方法网络层少、感受野小、泛化能力差等缺陷,提出了基于中间层监督卷积神经网络的图像超分辨率重建方法,以进一步提高图像重建的质量。方法 设计了具有中间层监督的卷积神经网络结构,该网络共有16层卷积层,其中第7层为中间监督层;定义了监督层误差函数和重建误差函数,用于改善深层卷积神经网络梯度消失现象。训练网络时包括图像预处理、特征提取和图像重建3个步骤,采用不同尺度因子(2、3、4)模糊的低分辨率图像交叉训练网络,以适应对不同模糊程度的图像重建;使用卷积操作提取图像特征时将参数pad设置为1,提高了对图像和特征图的边缘信息利用;利用残差学习完成高分辨率图像重建。结果 在Set5和Set14数据集上进行了实验,并和双三次插值、A+、SelfEx和SRCNN等方法的结果进行比较。在主观视觉评价方面,本文方法重建图像的清晰度和边缘锐度更好。客观评价方面,本文方法的峰值信噪比(PSNR)平均分别提高了2.26 dB、0.28 dB、0.28 dB和0.15 dB,使用训练好的网络模型重建图像耗用的时间不及SRCNN方法的一半。结论 实验结果表明,本文方法获得了更好的主观视觉评价和客观量化评价,提升了图像超分辨率重建质量,泛化能力好,而且图像重建过程耗时更短,可用于自然场景图像的超分辨率重建。  相似文献   

10.
目前,单幅图像超分辨率重建取得了很好的效果,然而大多数模型都是通过增加网络层数来达到好的效果,并没有去发掘各通道之间的相关性。针对上述问题,提出了一种基于通道注意力机制(CA)和深度可分离卷积(DSC)的图像超分辨率重建方法。整个模型采用多路径模式的全局和局部残差学习,首先利用浅层特征提取块来提取输入图像的特征;然后,在深层特征提取块中引入通道注意力机制,通过调整各通道的特征图权重来增加通道相关性,从而提取高频特征信息;最后,重建出高分辨率图像。为了减少注意力机制带来的巨大参数影响,在局部残差块中使用了深度可分离卷积技术以大大减少训练参数,同时采用自适应矩估计(Adam)优化器来加速模型的收敛,从而提高了算法性能。该方法在Set5、Set14数据集上进行图像重建,实验结果表明不仅该方法重建的图像具有更高的峰值信噪比(PSNR)和结构相似度(SSIM),而且所提模型的参数量减少为深度残差通道注意力网络(RCAN)模型的参数量的1/26。  相似文献   

11.
目的 图像分割的中心任务是寻找更强大的特征表示,而合成孔径雷达(synthetic aperture radar,SAR)图像中斑点噪声阻碍特征提取。为加强对SAR图像特征的提取以及对特征充分利用,提出一种改进的全卷积分割网络。方法 该网络遵循编码器—解码器结构,主要包括上下文编码模块和特征融合模块两部分。上下文编码模块(contextual encoder module,CEM)通过捕获局部上下文和通道上下文信息增强对图像的特征提取;特征融合模块(feature fusion module,FFM)提取高层特征中的全局上下文信息,将其嵌入低层特征,然后将增强的低层特征并入解码网络,提升特征图分辨率恢复的准确性。结果 在两幅真实SAR图像上,采用5种基于全卷积神经网络的分割算法作为对比,并对CEM与CEM-FFM分别进行实验。结果<显示,该网络分割结果的总体精度(overall accuracy,OA)、平均精度(average accuracy,AA)与Kappa系数比5种先进算法均有显著提升。其中,网络在OA上表现最好,CEM在两幅SAR图像上OA分别为91.082%和90.903%,较对比算法中性能最优者分别提高了0.948%和0.941%,证实了CEM的有效性。而CEM-FFM在CEM基础上又将结果分别提高了2.149%和2.390%,验证了FFM的有效性。结论 本文提出的分割网络较其他方法对图像具有更强大的特征提取能力,且能更好地将低层特征中的空间信息与高层特征中的语义信息融合为一体,使得网络对特征的表征能力更强、图像分割结果更准确。  相似文献   

12.
目的 全卷积模型的显著性目标检测大多通过不同层次特征的聚合实现检测,如何更好地提取和聚合特征是一个研究难点。常用的多层次特征融合策略有加法和级联法,但是这些方法忽略了不同卷积层的感受野大小以及产生的特征图对最后显著图的贡献差异等问题。为此,本文结合通道注意力机制和空间注意力机制有选择地逐步聚合深层和浅层的特征信息,更好地处理不同层次特征的传递和聚合,提出了新的显著性检测模型AGNet(attention-guided network),综合利用几种注意力机制对不同特征信息加权解决上述问题。方法 该网络主要由特征提取模块(feature extraction module, FEM)、通道—空间注意力融合模块(channel-spatial attention aggregation module, C-SAAM)和注意力残差细化模块(attention residual refinement module,ARRM)组成,并且通过最小化像素位置感知(pixel position aware, PPA)损失训练网络。其中,C-SAAM旨在有选择地聚合浅层的边缘信息以及深层抽象的语义特征,利用通道注意力和空间注意力避免融合冗余的背景信息对显著性映射造成影响;ARRM进一步细化融合后的输出,并增强下一个阶段的输入。结果 在5个公开数据集上的实验表明,AGNet在多个评价指标上达到最优性能。尤其在DUT-OMRON(Dalian University of Technology-OMRON)数据集上,F-measure指标相比于排名第2的显著性检测模型提高了1.9%,MAE(mean absolute error)指标降低了1.9%。同时,网络具有不错的速度表现,达到实时效果。结论 本文提出的显著性检测模型能够准确地分割出显著目标区域,并提供清晰的局部细节。  相似文献   

13.
为解决卷积神经网络提取特征遗漏、手势多特征提取不充分问题, 本文提出基于残差双注意力与跨级特征融合模块的静态手势识别方法. 设计了一种残差双注意力模块, 该模块对ResNet50网络提取的低层特征进行增强, 能够有效学习关键信息并更新权重, 提高对高层特征的注意力, 然后由跨级特征融合模块对不同阶段的高低层特征进行融合, 丰富高级特征图中不同层级之间的语义和位置信息, 最后使用全连接层的Softmax分类器对手势图像进行分类识别. 本文在ASL美国手语数据集上进行实验, 平均准确率为99.68%, 相比基础ResNet50网络准确率提升2.52%. 结果验证本文方法能充分提取与复用手势特征, 有效提高手势图像的识别精度.  相似文献   

14.
Wang  Jun  Zhao  Zhengyun  Yang  Shangqin  Chai  Xiuli  Zhang  Wanjun  Zhang  Miaohui 《Applied Intelligence》2022,52(6):6208-6226

High-level semantic features and low-level detail features matter for salient object detection in fully convolutional neural networks (FCNs). Further integration of low-level and high-level features increases the ability to map salient object features. In addition, different channels in the same feature are not of equal importance to saliency detection. In this paper, we propose a residual attention learning strategy and a multistage refinement mechanism to gradually refine the coarse prediction in a scale-by-scale manner. First, a global information complementary (GIC) module is designed by integrating low-level detailed features and high-level semantic features. Second, to extract multiscale features of the same layer, a multiscale parallel convolutional (MPC) module is employed. Afterwards, we present a residual attention mechanism module (RAM) to receive the feature maps of adjacent stages, which are from the hybrid feature cascaded aggregation (HFCA) module. The HFCA aims to enhance feature maps, which reduce the loss of spatial details and the impact of varying the shape, scale and position of the object. Finally, we adopt multiscale cross-entropy loss to guide network learning salient features. Experimental results on six benchmark datasets demonstrate that the proposed method significantly outperforms 15 state-of-the-art methods under various evaluation metrics.

  相似文献   

15.
随着人工智能的快速发展,基于计算机视觉的人体异常行为识别受到极大的关注,并被广泛应用到智能安防等领域。针对人们在加油站等重要场所抽烟以及司机驾驶途中打电话等违规行为,提出一种混合注意力机制的异常行为识别方法。利用引入的卷积块注意力模块重点关注输入对象的显著性特征,并对输入信息进行精细化的分配和处理,在突出重要信息的同时弱化无关信息。为提升网络模型的特征挖掘能力及增强网络的信息交互性,利用提出的卷积特征提取模块进一步提取识别对象的高层语义特征,并将其与低层细节特征进行融合以达到多尺度特征交互的目的。此外,为了减少网络训练过程中错误标签造成的损失,采用标签平滑对交叉熵损失函数进行修正以此来驱动模型的学习过程。实验结果表明,所提出的模型优于当前的主流网络,可有效检测出异常行为。  相似文献   

16.
目的 通道注意力机制在图像超分辨率中已经得到了广泛应用,但是当前多数算法只能在通道层面选择感兴趣的特征图而忽略了空间层面的信息,使得特征图中局部空间层面上的信息不能合理利用。针对此问题,提出了区域级通道注意力下的图像超分辨率算法。方法 设计了非局部残差密集网络作为网络的主体结构,包括非局部模块和残差密集注意力模块。非局部模块提取非局部相似信息并传到后续网络中,残差密集注意力模块在残差密集块结构的基础上添加了区域级通道注意力机制,可以给不同空间区域上的通道分配不同的注意力,使空间上的信息也能得到充分利用。同时针对当前普遍使用的L1和L2损失函数容易造成生成结果平滑的问题,提出了高频关注损失,该损失函数提高了图像高频细节位置上损失的权重,从而在后期微调过程中使网络更好地关注到图像的高频细节部分。结果 在4个标准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100上进行4倍放大实验,相比较于插值方法和SRCNN(image super-resolution using deep convolutional networks)算法,本文方法的PSNR(peak signal to noise ratio)均值分别提升约3.15 dB和1.58 dB。结论 区域级通道注意力下的图像超分辨率算法通过使用区域级通道注意力机制自适应调整网络对不同空间区域上通道的关注程度,同时结合高频关注损失加强对图像高频细节部分的关注程度,使生成的高分辨率图像具有更好的视觉效果。  相似文献   

17.
目的 基于深度学习的图像超分辨率重构研究取得了重大进展,如何在更好提升重构性能的同时,有效降低重构模型的复杂度,以满足低成本及实时应用的需要,是该领域研究关注的重要问题。为此,提出了一种基于通道注意力(channel attention,CA)嵌入的Transformer图像超分辨率深度重构方法(image super-resolution with channelattention-embedded Transformer,CAET)。方法 提出将通道注意力自适应地嵌入Transformer变换特征及卷积运算特征,不仅可充分利用卷积运算与Transformer变换在图像特征提取的各自优势,而且将对应特征进行自适应增强与融合,有效改进网络的学习能力及超分辨率性能。结果 基于5个开源测试数据集,与6种代表性方法进行了实验比较,结果显示本文方法在不同放大倍数情形下均有最佳表现。具体在4倍放大因子时,比较先进的SwinIR (image restoration using swin Transformer)方法,峰值信噪比指标在Urban100数据集上得到了0.09 dB的提升,在Manga109数据集提升了0.30 dB,具有主观视觉质量的明显改善。结论 提出的通道注意力嵌入的Transformer图像超分辨率方法,通过融合卷积特征与Transformer特征,并自适应嵌入通道注意力特征增强,可以在较好地平衡网络模型轻量化同时,得到图像超分辨率性能的有效提升,在多个公共实验数据集的测试结果验证了本文方法的有效性。  相似文献   

18.
目的 语义分割是计算机视觉中一项具有挑战性的任务,其核心是为图像中的每个像素分配相应的语义类别标签。然而,在语义分割任务中,缺乏丰富的多尺度信息和足够的空间信息会严重影响图像分割结果。为进一步提升图像分割效果,从提取丰富的多尺度信息和充分的空间信息出发,本文提出了一种基于编码-解码结构的语义分割模型。方法 运用ResNet-101网络作为模型的骨架提取特征图,在骨架末端附加一个多尺度信息融合模块,用于在网络深层提取区分力强且多尺度信息丰富的特征图。并且,在网络浅层引入空间信息捕获模块来提取丰富的空间信息。由空间信息捕获模块捕获的带有丰富空间信息的特征图和由多尺度信息融合模块提取的区分力强且多尺度信息丰富的特征图将融合为一个新的信息丰富的特征图集合,经过多核卷积块细化之后,最终运用数据依赖的上采样(DUpsampling)操作得到图像分割结果。结果 此模型在2个公开数据集(Cityscapes数据集和PASCAL VOC 2012数据集)上进行了大量实验,验证了所设计的每个模块及整个模型的有效性。新模型与最新的10种方法进行了比较,在Cityscapes数据集中,相比于RefineNet模型、DeepLabv2-CRF模型和LRR(Laplacian reconstruction and refinement)模型,平均交并比(mIoU)值分别提高了0.52%、3.72%和4.42%;在PASCAL VOC 2012数据集中,相比于Piecewise模型、DPN(deep parsing network)模型和GCRF(Gaussion conditional random field network)模型,mIoU值分别提高了6.23%、7.43%和8.33%。结论 本文语义分割模型,提取了更加丰富的多尺度信息和空间信息,使得分割结果更加准确。此模型可应用于医学图像分析、自动驾驶、无人机等领域。  相似文献   

19.
目的 经典的人眼注视点预测模型通常采用跳跃连接的方式融合高、低层次特征,容易导致不同层级之间特征的重要性难以权衡,且没有考虑人眼在观察图像时偏向中心区域的问题。对此,本文提出一种融合注意力机制的图像特征提取方法,并利用高斯学习模块对提取的特征进行优化,提高了人眼注视点预测的精度。方法 提出一种新的基于多重注意力机制(multiple attention mechanism,MAM)的人眼注视点预测模型,综合利用3种不同的注意力机制,对添加空洞卷积的ResNet-50模型提取的特征信息分别在空间、通道和层级上进行加权。该网络主要由特征提取模块、多重注意力模块和高斯学习优化模块组成。其中,空洞卷积能够有效获取不同大小的感受野信息,保证特征图分辨率大小的不变性;多重注意力模块旨在自动优化获得的低层丰富的细节信息和高层的全局语义信息,并充分提取特征图通道和空间信息,防止过度依赖模型中的高层特征;高斯学习模块用来自动选择合适的高斯模糊核来模糊显著性图像,解决人眼观察图像时的中心偏置问题。结果 在公开数据集SALICON(saliency in context)上的实验表明,提出的方法相较于同结构的SAM-Res(saliency attention modal)模型以及DINet(dilated inception network)模型在相对熵(Kullback-Leibler divergence,KLD)、sAUC(shuffled area under ROC curve)和信息增益(information gain,IG)评价标准上分别提高了33%、0.3%和6%;53%、0.5%和192%。结论 实验结果表明,提出的人眼注视点预测模型能通过加权的方式分别提取空间、通道、层之间的特征,在多数人眼注视点预测指标上超过了主流模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号