首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
在上海某典型街道峡谷内按一定的空间布点,在一定时段内同时对各布点进行采样并做一氧化碳浓度分析,同时记录车辆种类、车流量、气象条件等,分析街道峡谷内污染物浓度的分布.运用风向频率加权(WDFW)方法,结合大气流动和污染物扩散的CFD模型进行数值模拟计算.结果表明,数值模拟结果和现场观测结果较吻合,建筑物低的一侧污染物浓度远高于建筑物高的一侧污染物浓度,两侧的污染物浓度随着高度的增加而降低.  相似文献   

2.
采用现场观测和数值模拟的方法研究了城市街道内机动车排放污染物中的NO扩散特征。结果表明:城市街道中机动车排放污染物的对流扩散取决于屋顶风向和风速,随着建筑物顶部气流速度的增大,街道内同样位置的污染物浓度相对减小;当风向垂直于街道轴线时,街道内同样位置的污染物浓度最大;同时街道内机动车排放的污染物浓度与车流量成正比关系,即机动车流量越大污染物浓度越高。  相似文献   

3.
街区污染物扩散的数值研究   总被引:3,自引:0,他引:3  
对街区峡谷内交通污染扩散规律的研究是城市空气质量预测的主要内容之一。应用现代流体力学数值模拟方法进行大量算例的计算和分析,研究了城市街区峡谷污染物二维扩散的规律。包括比较各种条件下污染物的扩散浓度,考察来流风速、街区特征比例和日照等因素对扩散的影响,通过研究流场及湍流强度分析其扩散的动力学原因,为改进工程预测模式提供依据。  相似文献   

4.
影响街区峡谷浓度扩散的因素   总被引:1,自引:0,他引:1  
对街区峡谷内污染扩散规律的研究是城市空气质量预测的主要内容之一。应用现代流体力学数值模拟方法进行大量算例的计算和分析,研究了城市街区峡谷污染物二维扩散的规律。在分析二维街区峡谷内浓度扩散的规律时,发现对街区峡谷浓度扩散的两个影响因素,其中定量分析了湍流脉动对浓度扩散的影响,与层流时得到的浓度扩散进行了通量积分的比较;此外,定性分析了不同类型的街区峡谷对扩散的影响。  相似文献   

5.
随着城市化进程的加剧,汽车尾气在太阳辐射作用下发生光化学反应,生成的气态污染物NO_x会在街区中扩散造成环境污染,这也是光化学烟雾形成的重要环节.本文通过数值模拟的方法,将风洞实验对比验证典型高宽比1的街区峡谷模型计算的可靠性和准确性,再运用RNG k-ε湍流模型耦合NO_x化学反应模型进行数值计算,探究存在光化学反应下的气态污染物在城市六街区中的扩散迁移规律.结果发现,上游街区的光化学反应程度要大于下游街区,但是因为街区自身涡旋结构的流动以及自然通风的稀释作用会慢慢将生成气态污染物迁移到下游街区中,且气态污染物会在街区背风侧形成积聚达到一定的浓度后会沉积在整个街区中.  相似文献   

6.
在城市化加速建设的情况下,街道峡谷已成为城市建成环境重要的空间组成部分。街道峡谷中PM2.5和PM10质量浓度存在显著差异,建筑空间形态是其重要的影响因素。选取安徽省合肥市包河区同安街道为研究对象,监测PM2.5和PM10质量浓度变化并对其进行空气质量评价,从多维度视角出发研究街道峡谷空间形态,并对街道峡谷中下沉广场这一特殊建筑空间形态提出优化策略。结果表明,1)街道峡谷内PM2.5、PM10的日均质量浓度均表现出多峰变化的特点,PM2.5和PM10质量浓度最大值出现在8:00-9:00区间,最小值出现在13:00-14:00区间,因此建议同安街道的居民尽量避开工作日早高峰时期,在下午13:00-16:00期间出行,以减少颗粒物对健康的危害。2)运用AQI对同安街道各监测点空气质量进行评价,结果表明其空气质量状况以优良为主,等级多分布在1级和2级。其中选点E所在的口袋公园空气质量最优,选点B所在的商业下沉广场空气...  相似文献   

7.
选择福州市中心城区3种典型的行道树结构作为研究对象,以CO为交通污染物的示踪气体,分别对绿化带两侧,即道路中央和人行道上CO浓度的时空变化进行了测定,分析了道路中央CO浓度与人行道上CO浓度的差值ΔC。研究结果表明:不同结构的行道树对交通污染物扩散有显著影响。主干道低覆盖度结构,最有利于交通污染物扩散;主干道高覆盖度结构和支路结构,则不利于交通污染物的扩散,使大量污染物涌入人行道,对行人健康构成危害。交通污染物的扩散效果取决于树冠结构,通过对各道路树冠结构的研究发现,疏透度与覆盖度均较小时,扩散效果最好;疏透度较大、覆盖度也较大时,扩散效果最差。  相似文献   

8.
城市街道空气质量与道路绿化型式的关系   总被引:6,自引:0,他引:6  
通过对街区中茂密行道树对空气污染物扩散的利弊进行理论分析的基础上,以CO为自然示踪气体,对西安市几个典型街道中的气态污染物浓度分布做了实测。实测结果指出,道路车流量的大小是行道树树冠的净化功能和对污染物扩散的阻碍作用所占权重的主要影响因素,行道树对污染物扩散的阻碍作用主要受控于树木郁闭度而非绿量,指出城市道路绿化不应盲目追求绿量的提高,并据此提出在街道绿化中应根据车流量的大小采取不同绿化方案的建议。  相似文献   

9.
天津城市热岛及其对污染物扩散影响的数值模拟   总被引:1,自引:0,他引:1  
城市热岛直接影响城市风场结构和污染物扩散路径,以能量平衡模式得到的地面温度作为下边界条件、中尺度气象模式MM5作初始场和侧边界条件,建立了天津市500 m的细网格城市边界层模式并用其研究天津市秋季热岛及其对污染物扩散的影响.结果表明,模式可以较好地模拟城市热岛现象,地面温度日变化规律及近地层的温度廓线与实际观测值较一致,能够反映夜间出现的逆温.模式成功地再现了城市温度场和流场的三维结构,结果表明17:00时热岛强度在地面最强,到300m存在个别的弱热岛中心,500m高度城郊不存在温度差异;地面高温中心有一个弱的辐合中心,直接影响污染物在城区的扩散,模拟的污染物浓度在地面较低,150~300 m高度最大.该研究结果可为了解天津地区局地气候的形成、污染物的扩散及城市规划提供参考和帮助.  相似文献   

10.
用30—40目Pt/Al_2O_3催化剂时,乙醇深度氧化动力学可用乙醇,O_2及CO_2吸附L-H动力学方程描述。当催化剂粒度增大至4×2mm时,内扩散强烈地影响乙醇深度氧化速度。用动力学方法测定了O_2有效扩散系数。用Adams显示方法计算了在催化剂孔内O_2的压力分布。测定了乙醇深度氧化内扩散活化能,并将内扩散对活化能的影响用方程(10)解释。在动力学和内扩散区域,0_2的反应级数都接近一级。由实验测定的催化剂有效因子可用方程(11)估计。  相似文献   

11.
Turbulent flow and dispersion characteristics over a complex urban street canyon are investigated by large-eddy simulation using a modified version of the Fire Dynamics Simulator. Two kinds of subgrid scale (SGS) models, the constant coefficient Smagorinsky model and the Vreman model, are assessed. Turbulent statistics, particularly turbulent stresses and wake patterns, are compared between the two SGS models for three different wind directions. We found that while the role of the SGS model is small on average, the local or instantaneous contribution to total stress near the surface or edge of the buildings is not negligible. By yielding a smaller eddy viscosity near solid surfaces, the Vreman model appears to be more appropriate for the simulation of a flow in a complex urban street canyon. Depending on wind direction, wind fields, turbulence statistics, and dispersion patterns show very different characteristics. Particularly, tall buildings near the street canyon predominantly generate turbulence, leading to homogenization of the mean flow inside the street canyon. Furthermore, the release position of pollutants sensitively determines subsequent dispersion characteristics.  相似文献   

12.
During sunny days with periods of low synoptic wind, buoyancy forces can play a critical role on the air flow, and thus on the dispersion of pollutants in the built urban environments. Earlier studies provide evidence that when a surface inside an urban street canyon is at a higher temperature than that of local ambient air, buoyancy forces can modify the mechanically-induced circulation within the canyons (i.e., gaps between buildings). The aspect ratio of the urban canyon is a critical factor in the manifestation of the buoyancy parameter. In this paper, computational fluid dynamics simulations are performed on urban street canyons with six different aspect ratios, focusing on the special case where the leeward wall is at a greater temperature than local ambient air. A non-dimensional measure of the influence of buoyancy is used to predict demarcations between the flow regimes. Simulations are performed under a range of buoyancy conditions, including beyond those of previous studies. Observations from a field experiment and a wind tunnel experiment are used to validate the results.  相似文献   

13.
Niu  Honghong  Wang  Baoqing  Liu  Bowei  Liu  Yuhong  Liu  Jianfeng  Wang  Zebei 《Environmental Fluid Mechanics》2018,18(4):829-847

To explore the effect of traffic emissions on air quality within street canyon, the wind flow and pollutant dispersion distribution in urban street canyons of different H/W, building gap and wind direction are studied and discussed by 3D computational fluid dynamics simulations. The largest PM2.5 concentrations are 46.4, 37.5, 28.4 µg/m3 when x = ? 88, ? 19.3, ? 19.3 m in 1.5 m above the ground level and the ratio of H/W is 1:1, 1:2 and 2:1, respectively. The flow around the top of the building and clearance flow between the buildings in street canyon influence by different H/W, which affected the diffusion of fine particulate matters. The largest PM2.5 concentrations are 88.1, 31.6 and 33.7 µg/m3 when x = 148.0, ? 92.3 and ? 186.7 m above the ground level of 1.5 m height and the building gap of 0, 20 and 40%, respectively. The air flows are cut by the clearance in the street canyons, and present the segmental characteristics. The largest PM2.5 concentrations are 10.6, 11.2 and 16.0 µg/m3 when x = 165.3 m, x = 58.0 and 1.5 m above the ground level of 1.5 m height and wind direction of the parallel to the street, perpendicular to the street and southwest, respectively. Modelled PM2.5 concentrations are basic agreement with measured PM2.5 concentrations for southwest wind direction. These results can help analyze the difussion of PM2.5 concentration in street canyons and urban planning.

  相似文献   

14.
Experiments have been carried out to investigate turbulence at and above roof-level in an urban environment, and to predict the behaviour of street pollution from experiments using dye dispersion, for different roughness conditions and bed geometries. The flow in the boundary layer above an idealised urban environment has been simulated in a laboratory water flume. Comparisons have been made for the same model street canyon with and without the presence of upstream roughness. In the tests reported here, model street canyons were aligned perpendicular to the flow direction, and velocity measurements made within and above the model street canyons using a laser Doppler velocimeter (LDV). Flow visualisation techniques have also been used to confirm the gross flow features from streak images. Turbulence generated from the upstream roughness has a significant effect on the turbulence production and dispersion behaviour of the dye simulating pollution in street canyons.  相似文献   

15.
This paper describes the QUIC-URB fast response urban wind modeling tool and evaluates it against wind tunnel data for a 7 × 11 cubical building array and wide building street canyon. QUIC-URB is based on the Röckle diagnostic wind modeling strategy that rapidly produces spatially resolved wind fields in urban areas and can be used to drive urban dispersion models. Röckle-type models do not solve transport equations for momentum or energy; rather, they rely heavily on empirical parameterizations and mass conservation. In the model-experiment comparisons, we test two empirical building flow parameterizations within the QUIC-URB model: our implementation of the standard Röckle (SR) algorithms and a set of modified Röckle (MR) algorithms. The MR model attempts to build on the strengths of the SR model and introduces additional physically based, but simple parameterizations that significantly improve the results in most regions of the flow for both test cases. The MR model produces vortices in front of buildings, on rooftops and within street canyons that have velocities that compare much more favorably to the experimental results. We expect that these improvements in the wind field will result in improved dispersion calculations in built environments.  相似文献   

16.
The strong fluctuating component in the measured concentration time series of a dispersing gaseous pollutant in the atmospheric boundary layer, and the hazard level associated to short-term concentration levels, demonstrate the necessity of calculating the magnitude of turbulent fluctuations of concentration using computational simulation models. Moreover the computation of concentration fluctuations in cases of dispersion in realistic situations, such as built-up areas or street canyons, is of special practical interest for hazard assessment purposes. In this paper, the formulation and evaluation of a model for concentration fluctuations, based on a transport equation, are presented. The model is applicable in cases of complex geometry. It is included in the framework of a computational code, developed for simulating the dispersion of buoyant pollutants over complex geometries. The experimental data used for the model evaluation concerned the dispersion of a passive gas in a street canyon between 4 identical rectangular buildings performed in a wind tunnel. The experimental concentration fluctuations data have been derived from measured high frequency concentrations. The concentration fluctuations model is evaluated by comparing the model's predictions with the observations in the form of scatter plots, quantile-quantile plots, contour plots and statistical indices as the fractional bias, the geometrical mean variance and the factor-of-two percentage. From the above comparisons it is concluded that the overall model performance in the present complex geometry case is satisfactory. The discrepancies between model predictions and observations are attributed to inaccuracies in prescribing the actual wind tunnel boundary conditions to the computational code.  相似文献   

17.
In this study the Reynolds-averaged Navier-Stokes computational fluid dynamics methodology is used, which has proved to be a powerful tool for the simulations of the airflow and pollutant dispersion in the atmospheric environment. The interest is focused on the urban areas and more specifically on the street canyons, several types of which are examined in order to evaluate the performance of various turbulence models, including a Reynolds-stress model and variations of the k-ε model. The results of the two-dimensional simulations are compared with measurements from a diversity of independent street canyon experimental datasets, covering a wide range of aspect ratios, free stream velocities and roughnesses. This way more general and reliable conclusions can be reached about the applicability, accuracy and ease of use of each turbulence model. In this work, the renormalization group k-ε presented better results in most cases examined, while the Reynolds-stress model did not stand up for the expectations and also exhibited convergence problems.  相似文献   

18.
The modelling of pollutant dispersion at the street scale in an urban environment requires the knowledge of turbulence generated by the traffic motion in streets. In this paper, a theoretical framework to estimate mechanical turbulence induced by traffic in street canyons at low wind speed conditions is established. The standard deviation of the velocity fluctuations is adopted as a measure of traffic-produced turbulence (TPT). Based on the balance between turbulent kinetic energy production and dissipation, three different parameterisations for TPT suitable for different traffic flow conditions are derived and discussed. These formulae rely on the calculations of constants that need to be estimated on the basis of experimental data. One such estimate has been made with the help of a wind tunnel data set corresponding to intermediate traffic densities, which is the most common regime, with interacting vehicle wakes.  相似文献   

19.
High-resolution computational fluid dynamics (CFD) simulations have been performed to assess the dispersion of air pollutants (CO2) emanating from traffic in a busy street and in the vicinity of a complex configuration of buildings located in Salmiya, Kuwait City. New buildings are planned for this area, and the work here includes predictions for the dispersion of pollutants after the buildings’ completion. The CFD simulations are based on calculated CO2 concentration levels for traffic counts taken on location in Salmiya with the existing configuration of buildings. As the computer code used in this work has been evaluated previously, it will be applied here to predict with confidence any potential air pollution problem areas on the addition of the new buildings. It was found for very light wind, that the proposed new buildings help reduce pollution in the vicinity of residential buildings within the configuration of buildings, but as the wind becomes moderate to strong, there was a tendency for the pollutant to get trapped in the residential area. Results are given for both exceptionally high ambient temperatures and very light wind, which are not often reported in studies found in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号