首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Dynamic thermal postbuckling behavior of functionally graded cylindrical shells with surface-bonded piezoelectric actuators subjected to the combined action of thermal load and applied actuator voltage is studied. The shell material is graded across the thickness according to a power law. The material properties of the functionally graded cylindrical shells are considered to be temperature dependent. The theoretical formulations are based on the Sanders nonlinear kinematic relations, which account for the transverse shear strains, and the third-order shear deformation shell theory is employed. Hamilton's principle is used to derive the equations of motion governing piezoelectric FGM cylindrical shells. A finite difference approximation combined with the Runge-Kutta method is employed to predict the postbuckling equilibrium paths, and the dynamic buckling temperature difference is detected according to Budiansky's stability criterion. Numerical results are presented to demonstrate the effects of the applied actuator voltage, shell geometry, volume fraction exponent in the power-law variation of the FGM, and the temperature dependency of the material properties on the postbuckling behavior of the shell. The results for simpler states are validated with the known results in the literature.  相似文献   

2.
B. Mirzavand 《热应力杂志》2013,36(11):1117-1135
A thermal buckling analysis is presented for functionally graded cylindrical shells that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of thermal load and constant applied actuator voltage. The material properties are assumed to vary as a power form of the thickness coordinate. Derivation of the equations is based on the higher-order shear deformation shell theory using the Sanders nonlinear kinematic relations. Results for the buckling temperatures are obtained in the closed form solution. The effects of the applied actuator voltage, shell geometry, and volume fraction exponent of functionally graded material on the buckling temperature are investigated. The results for simpler states are validated with known data in the literature.  相似文献   

3.
This article deals with the thermal buckling and postbuckling of functionally graded material (FGM) beams with surface-bonded piezoelectric actuators based on physical neutral surface concept and high-order shear deformation theory including von Kármán strain–displacement relationships. The beams are exposed to a uniform temperature field and electric field, the material properties of FGM layers are temperature-dependent and vary in the thickness direction. The approximate solutions of piezoelectric FGM beams for thermal buckling and postbuckling are obtained by a two-step perturbation method, meanwhile, the analytical solutions of Timoshenko beam model and Euler beam model are also presented. The validity of the present work can be confirmed by comparisons with previous results. The effects of the applied actuator voltage, beam geometry as well as volume fraction index of FGM beam on the critical buckling temperature, and postbuckling load–deflection relationships are investigated.  相似文献   

4.
Buckling analysis of functionally graded material (FGM) beams with surface-bonded piezoelectric layers which are subjected to both thermal loading and constant voltage is studied. The material nonhomogeneous properties are assumed to vary smoothly by distribution of power law through the beam thickness. The Euler-Bernoulli beam theory and nonlinear strain-displacement relation are used to obtain the governing equations of piezoelectric FGM beam. Beam is assumed under three types of thermal loading and various types of boundary conditions. For each case of thermal loading and boundary conditions, closed-form solutions are obtained. The effects of the applied actuator voltage, beam geometry, boundary conditions, and power law index of functionally graded material on the buckling temperature are investigated.  相似文献   

5.
The unsymmetrical buckling of clamped shallow spherical shells made of functionally graded material (FGM) and surface-bonded piezoelectric actuators under thermal load is studied in this paper. The governing equations are based on classical shell theory and the Sanders nonlinear kinematic equations. It is assumed that properties of the functionally graded material vary continuously through the thickness of the shell according to a power law distribution of the volume fractions of the constituent materials.  相似文献   

6.
G. G. Sheng 《热应力杂志》2013,36(12):1249-1267
A theoretical method is developed to investigate the effects of thermal load and ring stiffeners on buckling and vibration characteristics of the functionally graded cylindrical shells, based on the first-order shear deformation theory (FSDT) considering rotary inertia. Heat conduction equation across the shell thickness is used to determine the temperature distribution. Material properties are assumed to be graded across the shell wall thickness of according to a power-law, in terms of the volume fractions of the constituents. The Rayleigh–Ritz procedure is applied to obtain the frequency equation. The effects of stiffener's number and size on natural frequency of functionally graded cylindrical shells are investigated. Moreover, the influences of material composition, thermal loading and shell geometry parameters on buckling and vibration are studied. The obtained results have been compared with the analytical results of other researchers, which showed good agreement. The new features of thermal vibration and buckling of ring-stiffened functionally graded cylindrical shells and some meaningful and interesting results obtained in this article are helpful for the application and the design of functionally graded structures under thermal and mechanical loads.  相似文献   

7.
This article studies the nonlinear thermal buckling and postbuckling of eccentrically stiffened functionally graded plates on elastic foundation subjected to mechanical, thermal, and thermomechanical loads. The noticeable point of this study is using the Reddy's higher order shear deformation plate theory and a general formula for the forces and moments of eccentrically stiffened functionally graded material (FGM) plate, which takes into account the influence of temperature on both the FGM plate and stiffeners. The article used the Galerkin method, stress function, and iterative method to determine the thermal buckling loads and postbuckling response of the eccentrically stiffened FGM plates in three different cases of boundary conditions. The effects of material, temperature-dependent material properties, elastic foundations, boundary conditions, outside stiffeners, and temperature on the buckling and postbuckling loading capacity of the FGM plates in thermal environments are analyzed and discussed. A good agreement is obtained by comparing the present analysis with other available literature.  相似文献   

8.
In this article, nonlinear vibration and dynamic response of imperfect functionally graded materials (FGM) thick double-curved shallow shells resting on elastic foundations are investigated using Reddy's third-order shear deformation shell theory in thermal environments. Material properties are assumed to be temperature dependent and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The FGM shells are subjected to mechanical, damping, and thermal loads. The Galerkin method and fourth-order \hboxRunge–Kutta method are used to calculate natural frequencies, nonlinear frequency–amplitude relation, and dynamic response of the shells. In numerical results, the effects of geometrical parameters, material properties, imperfections, shear deformation, the elastic foundations, mechanical, thermal and damping loads on the nonlinear dynamic response, and nonlinear vibration of FGM double-curved shallow shells are investigated. Accuracy of the present formulation is shown by comparing the results of numerical examples with the ones available in literature.  相似文献   

9.
In this study, the buckling analysis of the simply supported truncated conical shell made of functionally graded materials (FGMs) is presented. The FGM truncated conical shell subjected to an axial compressive load and resting on Winkler–Pasternak type elastic foundations. The material properties of functionally graded shells are assumed to vary continuously through the thickness. The modified Donnell type stability and compatibility equations are solved by Galerkin’s method and the critical axial load of FGM truncated conical shells with and without elastic foundations have been found analytically. The appropriate formulas for homogenous and FGM cylindrical shells with and without elastic foundations are found as a special case. Several examples are presented to show the accuracy and efficiency of the formulation. Finally, parametric studies on the buckling of FGM truncated conical and cylindrical shells on elastic foundations are being investigated. These parameters include; power-law and exponential distributions of FGM, Winkler foundation modulus, Pasternak foundation modulus and aspect ratios of shells.  相似文献   

10.
Abstract

Based on theory of piezoelectricity and using generalized coupled thermoelasticity, transient response of a simply supported functionally graded material rectangular plate embedded in sensor and actuator piezoelectric layers under applied electric field and thermal shock is studied. Thermoelastic properties of the plate vary continuously along the thickness direction according to exponential functions and Poisson ratio is assumed to be constant. Applying Fourier series state space technique to the basic coupled thermoelastic differential equations results in the ordinary differential equations which are solved analytically by using Laplace transform. Validation of the present approach is assessed by comparing the numerical results with the available results in literature. In parametric study, effect of the relaxation time, applied voltage and temperature and time history of the thermoelastic response of FGM plate attached to piezoelectric layers are investigated.  相似文献   

11.
Large amplitude thermally induced vibrations of cylindrical shells made of a through-the-thickness functionally graded material (FGM) are investigated in the current research. All of the thermo-mechanical properties of the FGM shell are assumed to be functions of temperature and thickness coordinate. Shell is subjected to rapid surface heating on the ceramic-rich surface while the other surface of the shell is kept at reference temperature. One dimensional heat conduction equation is constructed and solved by means of a hybrid finite difference-Crank–Nicolson algorithm. The constructed heat conduction equation is nonlinear since the thermal conductivity is temperature dependent. With the aid of first-order shear deformation shell theory under the axisymmetric Donnell kinematic assumptions and von Kármán type of strain-displacement relations, the total energy of the shell is established. Implementing the conventional Ritz method, a set of nonlinear coupled algebraic equations are obtained which govern the dynamics of the shell under thermal shock. These equations are solved in time domain using the Newmark time marching scheme and the simple Picard successive method. Parametric studies are given to explore the dynamics of an FGM cylindrical shell under thermal shock.  相似文献   

12.
This article presents analytical solutions for the nonlinear static and dynamic stability of imperfect eccentrically stiffened functionally graded material (FGM) higher order shear deformable double curved shallow shell on elastic foundations in thermal environments. It is assumed that the shell’s properties depend on temperature and change according to the power functions of the shell thickness. The shell is reinforced by the eccentrically longitudinal and transversal stiffeners made of full metal. Equilibrium, motion, and compatibility equations are derived using Reddy’s higher order shear deformation shell theory and taking into account the effects of initial geometric imperfection and the thermal stress in both the shells and stiffeners. The Galerkin method is applied to determine load–deflection and deflection–time curves. For the dynamical response, motion equations are numerically solved using Runge–Kutta method. The nonlinear dynamic critical buckling loads are found according to the criterion suggested by Budiansky–Roth. The influences of inhomogeneous parameters, dimensional parameters, stiffeners, elastic foundations, initial imperfection, and temperature increment on the nonlinear static and dynamic stability of thick FGM double curved shallow shells are discussed in detail. Results for various problems are included to verify the accuracy and e?ciency of the approach.  相似文献   

13.
In this article, the buckling and postbuckling behavior of functionally graded spherical shell panel is examined under nonuniform thermal environment. The effective material properties of the graded structure are evaluated using the Voigt's micromechanical model through the power-law distribution. For the analysis purpose, a general nonlinear higher order mathematical model is developed in conjunction with Green–Lagrange geometrical nonlinearity. The governing equation is derived using variational principle and solved through the direct iterative method. The effect of different geometrical and material parameters on the buckling and postbuckling responses of the functionally graded shell panels is examined and discussed in detail.  相似文献   

14.
In most published papers, in order to obtain the analytical solution of the crack problems in functionally graded materials (FGMs), the thermomechanical properties of FGMs are usually assumed to be very particular functions and, hence, may not be physically realizable for many actual material combinations. Very few analytical methods can be used to solve the thermal shock crack problem of an FGM cylindrical shell or plate with general thermomechanical properties. In this article, a set of analytical methods is proposed for the thermal shock crack problem of an FGM plate or cylindrical shell with general thermomechanical properties. The crack problem of a cylindrical shell is modeled by a plate on an elastic foundation. Greatly different from previous studies, a set of analytical methods using both the perturbation method and a piecewise model are developed to obtain the transient temperature field and thermal stress intensity factor (TSIF). The perturbation method is applied to deal with the general thermal properties and the piecewise model is used to deal with the general mechanical properties. In the analytical procedure, integral transform, the residue theorem, and the theory of singular integral equation are used. Several representative examples are considered to check the capability of the present method. The transient thermal shock behavior of a ZrO2/Ti-6Al-4 V FGM plate with a surface crack and a Rene 41-Zirconia FGM cylindrical shell with a circumferential crack are analyzed.  相似文献   

15.
In this article, the nonlinear free vibration behavior of functionally graded (FG) spherical shell panel is examined under nonlinear temperature field. The functionally graded material (FGM) constituents are assumed to be the function of temperature and the thermal conductivity. The effective \hboxmaterial properties of the FGM are obtained using the Voigt micromechanical model through power-law distribution. The mathematical model of the shell panel is developed using Green–Lagrange nonlinear kinematics in the framework of the higher order shear deformation theory. The desired governing \hboxequation of the FG shell panel under thermal environment is obtained using the classical Hamilton's principle. The domain is discretized with the help of the \hboxisoparametric finite element steps and the responses are computed using the direct \hboxiterative method. The convergence behavior of the present nonlinear numerical model has been checked and compared with the previous reported results. Numerous examples have been demonstrated for the FG spherical panel to show the influence of different geometrical and material parameters and support conditions on the linear and nonlinear frequency parameters.  相似文献   

16.
A finite element formulation for stress analysis of functionally graded material (FGM) sandwich plates and shell panels under thermal shock is presented in this work. A higher-order layerwise theory in conjunction with Sanders’ approximation for shells is used to develop the finite element formulation for transient stress analysis of FGM sandwich panels. The top and the bottom surfaces of FGM sandwich panels are made of pure ceramic and metal, respectively, and core of the sandwich is assumed to be made of FGM. The temperature profile in the thickness direction of the panels is considered to be varying as per the Fourier’s law of heat conduction equation for unsteady state. The heat conduction equations are solved using the central difference method in conjunction with the Crank–Nicolson approach. Transient thermal displacements of the sandwich panels are obtained using Newmark average acceleration method and the transient thermal stresses are obtained using stress–strain relations, subsequently. Results obtained from the present layerwise finite element formulations are first validated with available solutions in literature. Parametric studies are taken up to study the effects of volume fraction index, temperature dependency of material properties, core thickness, panel configuration, geometric and thermal boundary conditions on transient thermal stresses of FGM sandwich plates and shells.  相似文献   

17.
The static behavior of a rotating cylindrical shell with surface bounded sensor and actuator in an axisymmetric hygrothermal condition is analyzed. The shell is simply supported and could be rested on an elastic foundation. The material properties of the shell and piezoelectric sensor and actuator are assumed to be functionally graded in the radial direction. Using the Fourier series expansion method through the longitudinal direction and the differential quadrature method (DQM) across the radial direction, and governing differential equations are solved. The validity of the present work was verified by comparisons with other published works. Numerical results are presented to illuminate the effects of key parameters on the responses of the hybrid shell.  相似文献   

18.
In the present research, thermal buckling of shell made of functionally graded material (FGM) under thermal loads is investigated. The material properties of functionally graded materials (FGMs) are assumed to be graded in the axial direction according to a simple power law distribution in terms of the volume fractions of the constituents. In the previous articles that published, these properties are assumed to be graded in the thickness direction. Nonlinear kinematic (strain-displacement) relations are considered based on the first order shear deformation shell theory. By substituting kinematic and stress-strain relations of functionally graded shell in the total potential energy equation and employing Euler equations, the equilibrium equations are obtained. Applying Euler equations to the second variation of total potential energy equation leads to the stability equations. Then, buckling analysis of functionally graded shell under three types of thermal loads is carried out resulting into closed-form solutions.  相似文献   

19.
In this paper, thermal instability of shallow spherical shells made of functionally graded material (FGM) is considered. The governing equations for a thin spherical shell based on the Donnell–Mushtari–Vlasov theory are obtained. The equations are derived using the Sanders simplified kinematic relations and variational method. It is assumed that the mechanical properties vary linearly through the shell thickness. The constituent material of the functionally graded shell is assumed to be a mixture of ceramic and metal. Analytical solutions are obtained for three types of thermal loading including Uniform Temperature Rise (UTR), Linear Radial Temperature (LRT), and Nonlinear Radial Temperature (NRT). The results are validated with the known data in the literature.

  相似文献   

20.
This article focuses on analytical solutions for bifurcation buckling of FGM cylindrical shells under thermal and compressive loads. A new solution methodology is established based on Hamilton's principle. The fundamental problem is subsequently transformed into the solutions of symplectic eigenvalues and eigenvectors, respectively. Then, by applying a unidirectional Galerkin method, imperfection sensitivity of an imperfect FGM cylindrical shell is discussed in detail. The solutions reveal that boundary conditions, volume fraction exponent, FGM properties, and temperature rise distribution significantly influence the buckling behavior. Critical stresses are reduced greatly due to the existence of initial geometric imperfections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号