首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present research, thermal buckling of shell made of functionally graded material (FGM) under thermal loads is investigated. The material properties of functionally graded materials (FGMs) are assumed to be graded in the axial direction according to a simple power law distribution in terms of the volume fractions of the constituents. In the previous articles that published, these properties are assumed to be graded in the thickness direction. Nonlinear kinematic (strain-displacement) relations are considered based on the first order shear deformation shell theory. By substituting kinematic and stress-strain relations of functionally graded shell in the total potential energy equation and employing Euler equations, the equilibrium equations are obtained. Applying Euler equations to the second variation of total potential energy equation leads to the stability equations. Then, buckling analysis of functionally graded shell under three types of thermal loads is carried out resulting into closed-form solutions.  相似文献   

2.
In this paper, thermal instability of shallow spherical shells made of functionally graded material (FGM) is considered. The governing equations for a thin spherical shell based on the Donnell–Mushtari–Vlasov theory are obtained. The equations are derived using the Sanders simplified kinematic relations and variational method. It is assumed that the mechanical properties vary linearly through the shell thickness. The constituent material of the functionally graded shell is assumed to be a mixture of ceramic and metal. Analytical solutions are obtained for three types of thermal loading including Uniform Temperature Rise (UTR), Linear Radial Temperature (LRT), and Nonlinear Radial Temperature (NRT). The results are validated with the known data in the literature.

  相似文献   

3.
ABSTRACT

A thermal buckling analysis of an imperfect functionally graded cylindrical shell is considered using the Wan–Donnell model for initial geometrical imperfections. Derivation of the equations is based on the first-order classical shell theory using the Sanders nonlinear kinematic relations. Results for the buckling loads are obtained in the closed form. The effects of shell geometry and volume fraction exponent of functionally graded material on the buckling load are investigated. The results are validated with known data in the literature.  相似文献   

4.
B. Mirzavand 《热应力杂志》2013,36(11):1117-1135
A thermal buckling analysis is presented for functionally graded cylindrical shells that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of thermal load and constant applied actuator voltage. The material properties are assumed to vary as a power form of the thickness coordinate. Derivation of the equations is based on the higher-order shear deformation shell theory using the Sanders nonlinear kinematic relations. Results for the buckling temperatures are obtained in the closed form solution. The effects of the applied actuator voltage, shell geometry, and volume fraction exponent of functionally graded material on the buckling temperature are investigated. The results for simpler states are validated with known data in the literature.  相似文献   

5.
Dynamic thermal postbuckling behavior of functionally graded cylindrical shells with surface-bonded piezoelectric actuators subjected to the combined action of thermal load and applied actuator voltage is analyzed using an incremental numerical technique. The shell is graded across the thickness according to a power law form function. The material properties of the functionally graded cylindrical shells are considered to be temperature dependent. The theoretical formulations are based on the classical shell theory with Sanders' nonlinear kinematic relations. Then, using Hamilton's principle, equations of motion are derived for the piezoelectric FGM cylindrical shell. A finite difference based method combined with the Runge–Kutta method is employed to predict the postbuckling equilibrium paths, and the dynamic buckling temperature difference is detected according to Budiansky's stability criterion. Numerical results are presented to demonstrate the effects of the applied actuator voltage, shell geometry, volume fraction exponent of FGM, and the temperature dependency of the material properties on the postbuckling behavior of the shell. The results for simpler states are validated with the known data in the literature.  相似文献   

6.
Dynamic thermal postbuckling behavior of functionally graded cylindrical shells with surface-bonded piezoelectric actuators subjected to the combined action of thermal load and applied actuator voltage is studied. The shell material is graded across the thickness according to a power law. The material properties of the functionally graded cylindrical shells are considered to be temperature dependent. The theoretical formulations are based on the Sanders nonlinear kinematic relations, which account for the transverse shear strains, and the third-order shear deformation shell theory is employed. Hamilton's principle is used to derive the equations of motion governing piezoelectric FGM cylindrical shells. A finite difference approximation combined with the Runge-Kutta method is employed to predict the postbuckling equilibrium paths, and the dynamic buckling temperature difference is detected according to Budiansky's stability criterion. Numerical results are presented to demonstrate the effects of the applied actuator voltage, shell geometry, volume fraction exponent in the power-law variation of the FGM, and the temperature dependency of the material properties on the postbuckling behavior of the shell. The results for simpler states are validated with the known results in the literature.  相似文献   

7.
In this article, the buckling and postbuckling behavior of functionally graded spherical shell panel is examined under nonuniform thermal environment. The effective material properties of the graded structure are evaluated using the Voigt's micromechanical model through the power-law distribution. For the analysis purpose, a general nonlinear higher order mathematical model is developed in conjunction with Green–Lagrange geometrical nonlinearity. The governing equation is derived using variational principle and solved through the direct iterative method. The effect of different geometrical and material parameters on the buckling and postbuckling responses of the functionally graded shell panels is examined and discussed in detail.  相似文献   

8.
The static behavior of a rotating cylindrical shell with surface bounded sensor and actuator in an axisymmetric hygrothermal condition is analyzed. The shell is simply supported and could be rested on an elastic foundation. The material properties of the shell and piezoelectric sensor and actuator are assumed to be functionally graded in the radial direction. Using the Fourier series expansion method through the longitudinal direction and the differential quadrature method (DQM) across the radial direction, and governing differential equations are solved. The validity of the present work was verified by comparisons with other published works. Numerical results are presented to illuminate the effects of key parameters on the responses of the hybrid shell.  相似文献   

9.
Equilibrium and stability equations of a rectangular plate made of functionally graded material (FGM) under thermal loads are derived, based on the higher order shear deformation plate theory. Assuming that the material properties vary as a power form of the thickness coordinate variable z and using the variational method, the system of fundamental partial differential equations is established. The derived equilibrium and stability equations for functionally graded plates (FGPs) are identical to the equations for laminated composite plates. A buckling analysis of a functionally graded plate under four types of thermal loads is carried out and results in closed-form solutions. The critical buckling temperature relations are reduced to the respective relations for functionally graded plates with a linear composition of constituent materials and homogeneous plates. The results are compared with the critical buckling temperatures obtained for functionally graded plates based on classical plate theory given in the literature. The study concludes that higher order shear deformation theory accurately predicts the behavior of functionally graded plates, whereas the classical plate theory overestimates buckling temperatures.  相似文献   

10.
In this study, the buckling analysis of the simply supported truncated conical shell made of functionally graded materials (FGMs) is presented. The FGM truncated conical shell subjected to an axial compressive load and resting on Winkler–Pasternak type elastic foundations. The material properties of functionally graded shells are assumed to vary continuously through the thickness. The modified Donnell type stability and compatibility equations are solved by Galerkin’s method and the critical axial load of FGM truncated conical shells with and without elastic foundations have been found analytically. The appropriate formulas for homogenous and FGM cylindrical shells with and without elastic foundations are found as a special case. Several examples are presented to show the accuracy and efficiency of the formulation. Finally, parametric studies on the buckling of FGM truncated conical and cylindrical shells on elastic foundations are being investigated. These parameters include; power-law and exponential distributions of FGM, Winkler foundation modulus, Pasternak foundation modulus and aspect ratios of shells.  相似文献   

11.
G. G. Sheng 《热应力杂志》2013,36(12):1249-1267
A theoretical method is developed to investigate the effects of thermal load and ring stiffeners on buckling and vibration characteristics of the functionally graded cylindrical shells, based on the first-order shear deformation theory (FSDT) considering rotary inertia. Heat conduction equation across the shell thickness is used to determine the temperature distribution. Material properties are assumed to be graded across the shell wall thickness of according to a power-law, in terms of the volume fractions of the constituents. The Rayleigh–Ritz procedure is applied to obtain the frequency equation. The effects of stiffener's number and size on natural frequency of functionally graded cylindrical shells are investigated. Moreover, the influences of material composition, thermal loading and shell geometry parameters on buckling and vibration are studied. The obtained results have been compared with the analytical results of other researchers, which showed good agreement. The new features of thermal vibration and buckling of ring-stiffened functionally graded cylindrical shells and some meaningful and interesting results obtained in this article are helpful for the application and the design of functionally graded structures under thermal and mechanical loads.  相似文献   

12.
Present research deals with the geometrically nonlinear bending of a long cylindrical panel made of a through-the-thickness functionally graded material subjected to thermal load. A panel under the action of uniform temperature rise loading is considered. Formulation of the shell is based on the third-order shear deformation shell theory, where the first-order shear deformation and classical shell theory may be extracted as special cases. Thermomechanical properties of the shell are assumed to be temperature dependent and are estimated according to a power law function across the shell thickness. Also, it is assumed that shell is in contact with an elastic foundation which acts in tension as well as in compression. The nonlinear governing equations of the shell are obtained using the von Kármán type of geometrical nonlinearity. The obtained governing equations are solved for two cases, i.e., simply supported shells and clamped shells. The developed equations are solved using a two-step perturbation technique. Accurate closed-form expressions are provided to obtain the mid-span deflection of the shell as a function of temperature elevation. Numerical results are provided to analyze the effects of power law exponent, boundary conditions, temperature dependency, side to radius ratio, and side to thickness ratio.  相似文献   

13.
Large amplitude thermally induced vibrations of cylindrical shells made of a through-the-thickness functionally graded material (FGM) are investigated in the current research. All of the thermo-mechanical properties of the FGM shell are assumed to be functions of temperature and thickness coordinate. Shell is subjected to rapid surface heating on the ceramic-rich surface while the other surface of the shell is kept at reference temperature. One dimensional heat conduction equation is constructed and solved by means of a hybrid finite difference-Crank–Nicolson algorithm. The constructed heat conduction equation is nonlinear since the thermal conductivity is temperature dependent. With the aid of first-order shear deformation shell theory under the axisymmetric Donnell kinematic assumptions and von Kármán type of strain-displacement relations, the total energy of the shell is established. Implementing the conventional Ritz method, a set of nonlinear coupled algebraic equations are obtained which govern the dynamics of the shell under thermal shock. These equations are solved in time domain using the Newmark time marching scheme and the simple Picard successive method. Parametric studies are given to explore the dynamics of an FGM cylindrical shell under thermal shock.  相似文献   

14.
A three-dimensional analytical piezothermoelastic solution is presented for a functionally graded piezoelectric spherical shell subjected to various thermal boundary conditions applied on the inner and outer surfaces. Material properties are assumed to vary along the radius, r, obeying a power law. Both the thermal field and the pyroelectric responses are resolved using the state space method. On introducing three displacement and two stress functions, two independent kinds of state equations are derived from the basic equations of piezoelectricity. It is interesting that the first kind is a homogeneous equation only related to the purely elastic behavior of the sphere, yet the second has an inhomogeneous term associated with the thermal effect to determine the pyroelectric responses. The state equations are solved by expanding the field variables into series of spherical harmonic functions. Numerical examples are performed to investigate the influence of material inhomogeneity on the pyroelectric responses of the spherical shell.  相似文献   

15.
This work presents an analytical approach to investigate the mechanical and thermal buckling of functionally graded materials sandwich truncated conical shells resting on Pasternak elastic foundations, subjected to thermal load and axial compressive load. Shells are reinforced by closely spaced stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution and a general power law distribution. Four models of coated shell-stiffener arrangements are investigated. The change of spacing between stringers in the meridional direction also is taken into account. Two cases on uniform temperature rise and linear temperature distribution through the thickness of shell are considered. Using the first-order shear deformation theory, Lekhnitskii smeared stiffener technique and the adjacent equilibrium criterion, the linearization stability equations have been established. Approximate solution satisfies simply supported boundary conditions and Galerkin method is applied to obtain closed-form expression for determining the critical compression buckling load and thermal buckling load in cases uniform temperature rise and linear temperature distribution across the shell thickness. The effects of temperature, foundation, core layer, coating layer, stiffeners, material properties, dimensional parameters and semi-vertex angle on buckling behaviors of shell are shown.  相似文献   

16.
The transient thermal stresses of a functionally graded (FG) cylindrical shell subjected to a thermal shock are investigated. The dynamic temperature fields of FG shells are obtained by using the Laplace transform and power series method. The differential quadrature method is developed to obtain the transient thermal stresses by solving dynamic governing equations in terms of displacements. The effects of the material constitutions on the transient temperature and the thermal stresses are analyzed in the cases of obverse thermal shock and reverse thermal shock. It turns out that the thermal stresses could be alleviated by means of changing the volume fractions of the constituents.  相似文献   

17.
In this article, the nonlinear free vibration behavior of functionally graded (FG) spherical shell panel is examined under nonlinear temperature field. The functionally graded material (FGM) constituents are assumed to be the function of temperature and the thermal conductivity. The effective \hboxmaterial properties of the FGM are obtained using the Voigt micromechanical model through power-law distribution. The mathematical model of the shell panel is developed using Green–Lagrange nonlinear kinematics in the framework of the higher order shear deformation theory. The desired governing \hboxequation of the FG shell panel under thermal environment is obtained using the classical Hamilton's principle. The domain is discretized with the help of the \hboxisoparametric finite element steps and the responses are computed using the direct \hboxiterative method. The convergence behavior of the present nonlinear numerical model has been checked and compared with the previous reported results. Numerous examples have been demonstrated for the FG spherical panel to show the influence of different geometrical and material parameters and support conditions on the linear and nonlinear frequency parameters.  相似文献   

18.
Axisymmetric thermal and mechanical buckling of functionally graded circular plates is considered. Equilibrium and stability equations under thermal and mechanical loads are derived based on first-order shear deformation plate theory. Assuming that the material properties vary as a power form of the thickness coordinate variable z and using the variational method, the system of fundamental ordinary differential equations is established. Buckling analysis of a functionally graded plate under uniform temperature rise, linear and nonlinear gradient through the thickness, and uniform radial compression are considered, and the critical buckling loads are derived for clamped edge plates. The results are compared with the buckling loads obtained for a functionally graded plate based on the classical plate theory given in the literature.  相似文献   

19.
This article presents analytical solutions for the nonlinear static and dynamic stability of imperfect eccentrically stiffened functionally graded material (FGM) higher order shear deformable double curved shallow shell on elastic foundations in thermal environments. It is assumed that the shell’s properties depend on temperature and change according to the power functions of the shell thickness. The shell is reinforced by the eccentrically longitudinal and transversal stiffeners made of full metal. Equilibrium, motion, and compatibility equations are derived using Reddy’s higher order shear deformation shell theory and taking into account the effects of initial geometric imperfection and the thermal stress in both the shells and stiffeners. The Galerkin method is applied to determine load–deflection and deflection–time curves. For the dynamical response, motion equations are numerically solved using Runge–Kutta method. The nonlinear dynamic critical buckling loads are found according to the criterion suggested by Budiansky–Roth. The influences of inhomogeneous parameters, dimensional parameters, stiffeners, elastic foundations, initial imperfection, and temperature increment on the nonlinear static and dynamic stability of thick FGM double curved shallow shells are discussed in detail. Results for various problems are included to verify the accuracy and e?ciency of the approach.  相似文献   

20.
Thermal buckling analysis of deep imperfect functionally graded (FGM) spherical shell is considered in this paper. A mixture of ceramic and metal is considered for the FGM shell and the material properties, such as the modulus of elasticity and coefficient of thermal expansion, vary by a power law function through the thickness. Employing the Sanders non-linear kinematic relations, total potential energy function is derived and the equilibrium and stability equations are obtained for the imperfect shell. Approximate solutions satisfying the simply supported boundary condition are assumed and using the Galerkin method the error due to the approximation is minimized. The geometrically imperfect shell is considered and three types of thermal loadings, such as the uniform temperature rise (UTR), linear temperature rise through the thickness (LTR), and non-linear temperature rise through the thickness (NLTR) are considered and their associated buckling temperatures are obtained. The effects of different temperature functions and the magnitude of initial geometric imperfection are examined on the thermal buckling loads of the shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号