首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted to obtain row-by-row heat and mass transfer data during condensation of downward-flowing zeotropic mixture R123/R134a in a staggered bundle of horizontal low-finned tubes. The vapor temperature and the mass fraction of R134a at the tube bundle inlet were about 50°C and 14%, respectively. The refrigerant mass velocity ranged from 9 to 34 kg m−2 s−1, and the condensation temperature difference from 1.9 to 12 K. Four kinds of low-finned tubes with different fin geometry were tested. The highest heat transfer coefficient was obtained with a tube which showed the highest performance for R123. However, the diference among the tubes was much smaller for the mixture than for R123. The heat transfer coefficient and the vapor-phase mass transfer coefficient decreased significantly with decreasing mass velocity. The mass transfer coefficient increased with condensation temperature difference, which was due to the effect of suction associated with condensation. On the basis of the analogy between heat and mass transfer, a dimensionless correlation of the mass transfer coefficient was developed for each tube.  相似文献   

2.
Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A inside horizontal plain and microfin tubes of 9.52 mm outside diameter and 1 m length were measured at the condensation temperature of 40 °C with mass fluxes of 100, 200, and 300 kg m−2 s−1 and a heat flux of 7.7–7.9 kW m−2. For a plain tube, HTCs of R134a and R410A were similar to those of R22 while HTCs of R407C are 11–15% lower than those of R22. For a microfin tube, HTCs of R134a were similar to those of R22 while HTCs of R407C and R410A were 23–53% and 10–21% lower than those of R22. For a plain tube, our correlation agreed well with the present data for all refrigerants exhibiting a mean deviation of 11.6%. Finally, HTCs of a microfin tube were 2–3 times higher than those of a plain tube and the heat transfer enhancement factor decreased as the mass flux increased for all refrigerants tested.  相似文献   

3.
This paper presents a few salient features of an investigation carried out to study the heat transfer augmentation during condensation of water and R-134a vapor on horizontal integral-fin tubes. The experimental investigation was performed on two different experimental set-ups for water and R-134a. The test-sections were manufactured by machining fins over plain copper tubes of 24.4 ± 0.6 mm outside diameter. The performance of two types of finned tubes viz. circular integral-fin tubes (CIFTs) and spine integral-fin tubes (SIFTs) was studied for the condensation of water and R-134a. These tubes were positioned one by one inside the test-condenser to perform the experiments. All together the experiments were conducted for the condensation on 10 different test-section tubes. With the help of the experimental results, authors have developed an empirical equation. This equation predicts the condensing heat transfer coefficient from their own experimental data for the condensation over CIFTs and SIFTs within a range of ± 15% and experimental data of other thirteen investigators in a range of ± 35% for condensation of water and different refrigerants.  相似文献   

4.
Experiments on flow condensation have been conducted with both pure R32, R134a and their mixtures inside a tube (10 m long, 6 mm ID), with a mass flux of 131–369 kg m−2s−1 and average condensation temperature of 23–40°C. The experimental heat transfer coefficients are compared with those predicted from correlations. The maximum mean heat transfer coefficient reduction (from a linear interpolation of the single component values) occurs at a concentration of roughly 30% R32 for the same mass flux basis, and is approximately 20% at Gr = 190 kg m−2s−1, 16% at Gr = 300 kg m−2s−1. Non-ideal properties of the mixture have a certain, but relatively small, influence on the degradation. Among others, temperature and concentration gradients, slip, etc. are also causes of heat transfer degradation.  相似文献   

5.
In this study, condensation heat transfer coefficients (HTCs) were measured on a horizontal plain tube, low fin tube, and Turbo-C tube at the saturated vapor temperature of 39 °C for R22, R407C, and R410A with the wall subcooling of 3–8 °C. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation HTCs were up to 50% lower than those of R22. For R407C, as the wall subcooling increased, condensation HTCs decreased on a plain tube while they increased on both low fin and turbo-C tubes. This was due to the lessening effect of the vapor diffusion film with a rapid increase in condensation rate on enhanced tubes. On the other hand, condensation HTCs of R410A, almost an azeotrope, were similar to those of R22. For all refrigerants tested, condensation HTCs of turbo-C tube were the highest among the tubes tested showing a 3–8 times increase as compared to those of a plain tube.  相似文献   

6.
Experiments were performed on the convective boiling heat transfer in horizontal minichannels with CO2. The test section is made of stainless steel tubes with inner diameters of 1.5 and 3.0 mm and with lengths of 2000 and 3000 mm, respectively, and it is uniformly heated by applying an electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 20–40 kW m−2, a mass flux range of 200–600 kg m−2 s−1, saturation temperatures of 10, 0, −5, and −10 °C and quality ranges of up to 1.0. Nucleate boiling heat transfer contribution was predominant, especially at low quality region. The reduction of heat transfer coefficient occurred at a lower vapor quality with a rise of heat flux, mass flux and saturation temperature, and with a smaller inner tube diameter. The experimental heat transfer coefficient of CO2 is about three times higher than that of R-134a. Laminar flow appears in the minichannel flows. A new boiling heat transfer coefficient correlation that is based on the superposition model for CO2 was developed with 8.41% mean deviation.  相似文献   

7.
The objectives of this paper are to develop experimental correlations of heat transfer for enhanced tubes used in a falling film condenser, and to provide a guideline for optimum design of the falling film condenser with a high condensing temperature of 59.8 °C. Tests are performed for four different enhanced tubes; a low-fin and three Turbo-C tubes. The working fluid is HFC134a, and the system pressure is 16.0 bar. The results show that the heat transfer enhancement of low-fin tube, Turbo-C (1), Turbo-C (2) and Turbo-C (3) ranges 2.8–3.4 times, 3.5–3.8 times, 3.8–4.0 times and 3.6–3.9 times, respectively, compared with the theoretical Nusselt correlation. It was found that the condensation heat transfer coefficient decreased with increasing the falling film Reynolds number and the wall subcooling temperature. It was also found that the enhanced tubes became more effective in the high wall subcooling temperature region than in the low wall subcooling temperature region. This study developed an experimental correlation of the falling film condensation with an error band of ±5%.  相似文献   

8.
Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m−2 s−1 and a quality range from approximately 10–80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18° helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile.  相似文献   

9.
Flow pattern and heat transfer during evaporation in a 10.7 mm diameter smooth tube and a micro-fin tube are presented. The tubes were tested in the ranges of mass flux between 163 and 408 kg m−2 s−1, and heat flux between 2200 and 56 000 W m−2. The evaporation temperature was 6 °C. Flow maps for both the tubes are plotted in the coordinates of mass flux and vapor quality. The relations of flow pattern and local heat transfer coefficient are discussed. The heat transfer coefficients for intermittent and annular flows in both the smooth tube and the micro-fin tube are shown to agree well with Gungor and Winterton's correlation with modified constants.  相似文献   

10.
This paper reports an experimental investigation of convective boiling heat transfer and pressure drop of refrigerant R-134a in smooth, standard microfin and herringbone copper tubes of 9.52 mm external diameter. Tests have been conducted under the following conditions: inlet saturation temperature of 5 °C, qualities from 5 to 90%, mass velocity from 100 to 500 kg s−1 m−2, and a heat flux of 5 kW m−2. Experimental results indicate that the herringbone tube has a distinct heat transfer performance over the mass velocity range considered in the present study. Thermal performance of the herringbone tube has been found better than that of the standard microfin in the high range of mass velocities, and worst for the smallest mass velocity (G=100 kg s−1 m−2) at qualities higher than 50%. The herringbone tube pressure drop is higher than that of the standard microfin tube over the whole range of mass velocities and qualities. The enhancement parameter is higher than one for both tubes for mass velocities lower than 200 kg s−1 m−2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient.  相似文献   

11.
The objective of this paper is to investigate the influence of nanoparticles on the heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, and to present a correlation for predicting heat transfer performance of refrigerant-based nanofluid. For the convenience of preparing refrigerant-based nanofluid, R113 refrigerant and CuO nanoparticles were used. Experimental conditions include an evaporation pressure of 78.25 kPa, mass fluxes from 100 to 200 kg m−2 s−1, heat fluxes from 3.08 to 6.16 kW m−2, inlet vapor qualities from 0.2 to 0.7, and mass fractions of nanoparticles from 0 to 0.5 wt%. The experimental results show that the heat transfer coefficient of refrigerant-based nanofluid is larger than that of pure refrigerant, and the maximum enhancement of heat transfer coefficient is 29.7%. A heat transfer correlation for refrigerant-based nanofluid is proposed, and the predictions agree with 93% of the experimental data within the deviation of ±20%.  相似文献   

12.
CO2 flow condensation heat transfer coefficients and pressure drop are investigated for 0.89 mm microchannels at horizontal flow conditions. They were measured at saturation temperatures of −15 and −25 °C, mass fluxes from 200 to 800 kg m−2 s−1, and wall subcooling temperatures from 2 to 4 °C. Flow patterns for experimental conditions were predicted by two flow pattern maps, and it could be predicted that annular flow patterns could exist in most of flow conditions except low mass flux and low vapor quality conditions. Measured heat transfer coefficients increased with the increase of mass fluxes and vapor qualities, whereas they were almost independent of wall subcooling temperature changes. Several correlations could predict heat transfer coefficients within acceptable error range, and from this comparison, it could be inferred that the flow condensation mechanism in 0.89 mm channels should be similar to that in large tubes. CO2 two-phase pressure drop, measured in adiabatic conditions, increased with the increase of mass flux and vapor quality, and it decreased with the increase of saturation temperature. By comparing measured pressure drop with calculated values, it was shown that several correlations could predict the measured values relatively well.  相似文献   

13.
This paper presents a comparative study of the condensation heat transfer coefficients in a smooth tube when operating with pure refrigerant R134a and its mixture with lubricant Castrol “icematic sw”. The lubricant is synthetic polyol ester based oil commonly used in lubricating the compressors. Two concentrations of R134a-oil mixtures of 2% and 5% oil (by mass) were analysed for a range of saturation temperatures of refrigerant R134a between 35 °C and 45 °C. The mass flow rate of the refrigerant and the mixtures was carefully maintained at 1 g/s, with a vapour quality varying between 1.0 and 0. The effects of vapour quality, flow rate, saturation temperature and temperature difference between saturation and tube wall on the heat transfer coefficient are investigated by analysing the experimental data. The experimental results were then compared with predictions from earlier models [Int J Heat Mass Transfer (1979), 185; 6th Int Heat Transfer Congress 3 (1974) 309; Int J Refrig 18 (1995) 524; Trans ASME 120 (1998) 193]. Finally two new empirical models were developed to predict the two-phase condensation heat transfer coefficient for pure refrigerant R134a and a mixture of refrigerant R134a with Castrol “icematic sw”.  相似文献   

14.
This study presents a prediction model for the condensation heat transfer characteristics of binary zeotropic refrigerant mixtures inside horizontal smooth tubes. In this model, both the vapor-side and liquid-side mass transfers are considered, and the high flux mass transfer correction factor is used to evaluate mass transfer coefficients. The model was applied to the binary zeotropic refrigerant mixture R134a/R123, which has a large temperature glide. Calculation results showed that the heat transfer degradation of R134a/R123 due to gradients in the mass fraction and temperature is considerable, and depends on the mass fraction of the more volatile component and the vapor mass quality of the refrigerant mixture. By comparison with experimental data, incorporating the present finite mass transfer model for the liquid film side into the calculation algorithm was shown to reasonably well predict the condensation heat transfer coefficients of binary refrigerant mixtures with the mean deviation of about 10.3%. In the present calculations, however, it was also found that the high flux mass transfer correction factor had only a slight effect on the condensation heat transfer.  相似文献   

15.
In this study, external condensation heat transfer coefficients (HTCs) of six flammable refrigerants of propylene (R1270), propane (R290), isobutane (R600a), butane (R600), dimethylether (RE170), and HFC32 were measured at the vapor temperature of 39 °C on a plain tube of 19.0 mm outside diameter with a wall subcooling of 3–8 °C under a heat flux of 7–23 kW m−2. Test results showed a typical trend that external condensation HTCs decrease with the wall subcooling. No unusual behavior or phenomenon was observed for these flammable refrigerants during experiments. HFC32 and DME showed 28–44% higher HTCs than those of HCFC22 due to their excellent thermophysical properties. Propylene and butane showed the similar HTCs as those of HCFC22 while propane and isobutane showed 9% lower HTCs than those of HCFC22. Finally, a general correlation was made by modifying Nusselt's equation based upon the measured data of eleven fluids of various vapor pressures including halogenated refrigerants. The general equation showed an excellent agreement with all data exhibiting a deviation of less than 3%.  相似文献   

16.
Two-phase heat transfer coefficient characteristics of R404A condensing under forced flow conditions inside smooth, microfin and cross-hatched horizontal tubes are experimentally investigated. Experimental parameters include a lubricating polyol ester oil concentration varied from 0 to 4%. The test runs were done at average inlet saturated condensing temperatures of 40 °C. The inlet vapor was kept at saturation (quality=1.0). The mass fluxes were between 200 and 600 kg/m2 s, and the heat fluxes were selected to obtain a quality of 0.0 at the outlet of the test section, varying from 5 to 45 kW/m2. The heat transfer enhancement factor varied between 1.8 and 2.4 for both microfin and cross-hatched tubes. The larger values applied for larger mass fluxes for the cross-hatched tube and smaller mass fluxes for the microfin tube. Enhancement factors increased as oil concentration increased up to oil concentrations of 2%. For higher oil concentrations the enhancement decreased especially at high mass fluxes, the cross-hatched tube being less sensitive to oil contamination. Pressure drop in the test section increased by approximately 25% as the oil concentration increased from 0 to 4%. The results from the experiments are compared with those calculated from correlations reported in the literature. Moreover, modified correlations for the condensation heat transfer coefficient are proposed for practical applications.  相似文献   

17.
In this study, condensation heat transfer coefficients and pressure drops of R-410A are obtained in flattened microfin tubes made from 7.0 mm O.D. round microfin tubes. The test range covers saturation temperature 45 °C, mass flux 100–400 kg m−2 s−1 and quality 0.2–0.8. Results show that the effect of aspect ratio on condensation heat transfer coefficient is dependent on the flow pattern. For annular flow, the heat transfer coefficient increases as aspect ratio increases. For stratified flow, however, the heat transfer coefficient decreases as aspect ratio increases. The pressure drop always increases as aspect ratio increases. Possible reasoning is provided based on the estimated flow pattern in flat microfin tubes. Comparison with existing round microfin tube correlations is made.  相似文献   

18.
In this study, external condensation heat transfer coefficients (HTCs) of nonazeotropic refrigerant mixtures of HFC32/HFC134a and HFC134a/HCFC123 at various compositions were measured on a horizontal smooth tube of a 19 mm outside diameter. All data were taken at the vapor temperature of 39 °C with a wall subcooling of 3–8 °C. Test results showed that HTCs of the tested mixtures were 19.4–85.1% lower than the ideal values calculated by the mole fraction weighting of the HTCs of the pure components. A thermal resistance due to the diffusion vapor film seemed to be partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures.  相似文献   

19.
Carbon dioxide among natural refrigerants has gained a considerable attention as an alternative refrigerant due to its excellent thermophysical properties. In-tube evaporation heat transfer characteristics of carbon dioxide were experimentally investigated and analyzed as a function of evaporating temperature, mass flux, heat flux and tube geometry. Heat transfer coefficient data during evaporation process of carbon dioxide were measured for 5 m long smooth and micro-fin tubes with outer diameters of 5 and 9.52 mm. The tests were conducted at mass fluxes of from 212 to 656 kg m−2 s−1, saturation temperatures of from 0 to 20 °C and heat fluxes of from 6 to 20 kW m−2. The difference of heat transfer characteristics between smooth and micro-fin tubes and the effect of mass flux, heat flux, and evaporation temperature on enhancement factor (EF) and penalty factor (PF) were presented. Average evaporation heat transfer coefficients for a micro-fin tube were approximately 150–200% for 9.52 mm OD tube and 170–210% for 5 mm OD tube higher than those for the smooth tube at the same test conditions. The effect of pressure drop expressed by measured penalty factor of 1.2–1.35 was smaller than that of heat transfer enhancement.  相似文献   

20.
The quasi local heat transfer coefficients of R22 and R407C in the coaxial counterflow condenser (20 mm ID) of a refrigerating vapour compression plant have been experimentally measured. The experimental conditions under which the heat transfer coefficients were determined reflect a typical working situation for small scale refrigeration systems. The plant runs with low mass fluxes of refrigerant within the range of 45.5–120 kg/m2/s. During the experimental tests the pressure at the inlet of the test condenser varies within a fixed range between 15.2 and 14.3 bar. The results illustrate that the R22 heat transfer coefficient is always greater than that of R407C. Furthermore, comparisons between the experimental data and the values predicted by means of the most credited literature relationships for gravity-driven condensation are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号