首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An experimental investigation of condensation heat transfer in 9.52 mm O.D. horizontal copper tubes was conducted using R22 and R410A. The test rig had a straight, horizontal test section with an active length of 0.92 m and was cooled by the heat transfer fluid (cold water) circulated in a surrounding annulus. Constant heat flux of 11.0 kW/m2 was maintained throughout the experiment and refrigerant quality varied from 0.9 to 0.1. The condensation test results at 45 °C were reported for 40–80 kg/h mass flow rate. The local and average condensation coefficients for seven microfin tubes were presented compared to those for a smooth tube. The average condensation coefficients of R22 and R410A for the microfin tubes were 1.7–3.19 and 1.7–2.94 times larger than those in smooth tube, respectively.  相似文献   

2.
Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m−2 s−1 and a quality range from approximately 10–80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18° helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile.  相似文献   

3.
Effects of fin height and helix angle on condensation inside a herringbone microfin tube have been experimentally investigated with five types of herringbone microfin tubes. Heat transfer coefficients are about 2–4 times higher than that of the helical microfin tube under high mass velocity conditions. In the low mass velocity, they are equal to that of the helical microfin tube. The heat transfer enhancement increases with fin height up to 0.18 mm; higher fin heights show enhancement values similar to the 0.18 mm results. Pressure drop increases with the fin height. Larger helix angle yields higher heat transfer and higher pressure drop. For the lowest fin and/or smallest helix angle, the pressure drop is comparable with that of the helical microfin tube, while the heat transfer enhancement is higher. The enhancement mechanism is discussed from flow pattern observations. Effect of mass transfer resistance for R410A is estimated and negligible effects have been proved.  相似文献   

4.
Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A inside horizontal plain and microfin tubes of 9.52 mm outside diameter and 1 m length were measured at the condensation temperature of 40 °C with mass fluxes of 100, 200, and 300 kg m−2 s−1 and a heat flux of 7.7–7.9 kW m−2. For a plain tube, HTCs of R134a and R410A were similar to those of R22 while HTCs of R407C are 11–15% lower than those of R22. For a microfin tube, HTCs of R134a were similar to those of R22 while HTCs of R407C and R410A were 23–53% and 10–21% lower than those of R22. For a plain tube, our correlation agreed well with the present data for all refrigerants exhibiting a mean deviation of 11.6%. Finally, HTCs of a microfin tube were 2–3 times higher than those of a plain tube and the heat transfer enhancement factor decreased as the mass flux increased for all refrigerants tested.  相似文献   

5.
Two-phase heat transfer coefficient characteristics of R404A condensing under forced flow conditions inside smooth, microfin and cross-hatched horizontal tubes are experimentally investigated. Experimental parameters include a lubricating polyol ester oil concentration varied from 0 to 4%. The test runs were done at average inlet saturated condensing temperatures of 40 °C. The inlet vapor was kept at saturation (quality=1.0). The mass fluxes were between 200 and 600 kg/m2 s, and the heat fluxes were selected to obtain a quality of 0.0 at the outlet of the test section, varying from 5 to 45 kW/m2. The heat transfer enhancement factor varied between 1.8 and 2.4 for both microfin and cross-hatched tubes. The larger values applied for larger mass fluxes for the cross-hatched tube and smaller mass fluxes for the microfin tube. Enhancement factors increased as oil concentration increased up to oil concentrations of 2%. For higher oil concentrations the enhancement decreased especially at high mass fluxes, the cross-hatched tube being less sensitive to oil contamination. Pressure drop in the test section increased by approximately 25% as the oil concentration increased from 0 to 4%. The results from the experiments are compared with those calculated from correlations reported in the literature. Moreover, modified correlations for the condensation heat transfer coefficient are proposed for practical applications.  相似文献   

6.
This paper presents a comprehensive comparison of eight previously proposed correlations with available experimental data for the frictional pressure drop during condensation of refrigerants in helically grooved, horizontal microfin tubes. Calculated values are compared with experimental data for seven refrigerants (R11, R123, R134a, R22, R32, R125 and R410A) and eight tubes and with mass velocity from 78 to 459 kg/m2 s. The tubes had inside diameter at the fin root between 6.41 and 8.91 mm; the fin height varied between 0.15 and 0.24 mm; the fin pitch varied between 0.34 and 0.53 mm and helix angle between 13 and 20°. The results show that the overall r.m.s. deviations of relative residuals of frictional pressure gradient for all tubes and all refrigerants taking together decreased in the order of the correlations of Nozu et al. [Exp. Therm. Fluid Sci. 18 (1998) 82], Newell and Shah [Refrigerant heat transfer, pressure drop, and void fraction effects in microfin tubes. In: Proc. 2nd Int. Symp. on Two-Phase Flow and Experimentation, vol. 3. Italy: Edizioni ETS; 1999. p. 1623–39], Kedzierski and Goncalves [J. Enhanced Heat Transfer 6 (1999) 161], Cavallini et al. [Heat Technol. 15 (1997) 3], Goto et al. (b) [Int. J. Refrigeration 24 (2001) 628], Choi et al. [Generalized pressure drop correlation for evaporation and condensation in smooth and microfin tubes. In: Proc. of IIF-IIR Commision B1, Paderborn, Germany, B4, 2001. p. 9–16], Haraguchi et al. [Condensation heat transfer of refrigerants HCFC134a, HCFC123 and HCFC22 in a horizontal smooth tube and a horizontal microfin tube. In: Proc. 30th National Symp. of Japan, Yokohama, 1993. p. 343–5], and Goto et al. (a) [Int. J. Refrigeration 24 (2001) 628], i.e., this final correlation (Goto et al. (a)) gives the best overall representation of the data.  相似文献   

7.
A comparison was made between the predictions of previously proposed empirical correlations and theoretical model and available experimental data for the heat transfer coefficient during condensation of refrigerants in horizontal microfin tubes. The refrigerants tested were R11, R123, R134a, R22 and R410A. Experimental data for six tubes with the tube inside diameter at fin root of 6.49–8.88 mm, the fin height of 0.16–0.24 mm, fin pitch of 0.34–0.53 mm and helix angle of groove of 12–20° were adopted. The r.m.s. error of the predictions for all tubes and all refrigerants decreased in the order of the correlations proposed by Luu and Bergles [ASHRAE Trans. 86 (1980) 293], Cavallini et al. [Cavallini A, Doretti L, Klammsteiner N, Longo L G, Rossetto L. Condensation of new refrigerants inside smooth and enhanced tubes. In: Proc. 19th Int. Cong. Refrigeration, vol. IV, Hague, The Netherlands, 1995. p. 105–14], Shikazono et al. [Trans. Jap. Sco. Mech. Engrs. 64 (1995) 196], Kedzierski and Goncalves [J. Enhanced Heat Transfer 6 (1999) 16], Yu and Koyama [Yu J, Koyama S. Condensation heat transfer of pure refrigerants in microfin tubes. In: Proc. Int. Refrigeration Conference at Purdue Univ., West Lafayette, USA, 1998. p. 325–30], and the theoretical model proposed by Wang et al. [Int. J. Heat Mass Transfer 45 (2002) 1513].  相似文献   

8.
Thermal characteristics of ammonia flow boiling in a microfin plate evaporator are experimentally investigated. Titanium microfin heat transfer surface is manufactured to enhance boiling heat transfer. Longitudinally- and laterally-microfined surfaces are used and those performances are compared. Heat transfer coefficient of microfin plate evaporator is also compared with that of plain-surface plate evaporator. The effects of mass flux, heat flux, channel height, and saturation pressure on heat transfer coefficient are presented and discussed. The experiments are conducted for the range of mass flux (5 and 7.5 kg m−2 s−1), heat flux (10, 15, and 20 kW m−2), channel height (1, 2, and 5 mm), and saturation pressure (0.7 and 0.9 MPa). Heat transfer coefficient is compared with that predicted by available empirical correlations proposed by other researchers. Modified correlations using Lockhart-Martinelli parameter to predict heat transfer coefficient are developed and they cover more than 87% of the experimental data.  相似文献   

9.
Heat transfer coefficient and pressure drop were measured for condensation and evaporation of R410A and HCFC22 inside internally grooved tubes. The experiments were performed for a conventional spiral groove tube of 8.01 mm o.d. and 7.30 mm mean i.d., and a herring-born groove tube of 8.00 mm o.d. and 7.24 mm mean i.d. To measure the local heat transfer coefficients and pressure drop, the test section was subdivided into four small sections having 2 m working length. The ranges of refrigerant mass flow density was from 200 to 340 kg/(m2 s) for both condensation and evaporation of R410A and HCFC22, and the vapour pressure was 2.41 MPa for condensation and 1.09 MPa for the evaporation of R410A. The obtained heat transfer data for R410A and HCFC22 indicate that the values of the local heat transfer coefficients of the herring-bone grooved tube are about twice as large as those of spiral one for condensation and are slightly larger than those of spiral one for the evaporation. The measured local pressure drop in both condensation and evaporation is well correlated with the empirical equation proposed by the authors.  相似文献   

10.
A generalized prediction correlation of condensation pressure drop inside herringbone microfin tubes has been proposed which includes the new empirical correlation of two-phase frictional multiplier and author’s previously proposed correlation of single-phase friction factor for herringbone microfin tubes. Three existing correlations and the newly proposed correlation of condensation pressure drop for herringbone microfin tubes have been compared with the available experimental data of five herringbone microfin tubes during condensation of R410A. From the results of overall root-mean-square (r.m.s.) deviations of relative residuals of condensation pressure drop for all tubes, proposed correlation shows best performance. Proposed correlation can also predict other experimental data of two-phase pressure drop of R410A during adiabatic two-phase flow and previously measured data of condensation pressure drop of R22 within ±20% which are not used to develop the proposed correlation.  相似文献   

11.
This paper reports an experimental investigation of convective boiling heat transfer and pressure drop of refrigerant R-134a in smooth, standard microfin and herringbone copper tubes of 9.52 mm external diameter. Tests have been conducted under the following conditions: inlet saturation temperature of 5 °C, qualities from 5 to 90%, mass velocity from 100 to 500 kg s−1 m−2, and a heat flux of 5 kW m−2. Experimental results indicate that the herringbone tube has a distinct heat transfer performance over the mass velocity range considered in the present study. Thermal performance of the herringbone tube has been found better than that of the standard microfin in the high range of mass velocities, and worst for the smallest mass velocity (G=100 kg s−1 m−2) at qualities higher than 50%. The herringbone tube pressure drop is higher than that of the standard microfin tube over the whole range of mass velocities and qualities. The enhancement parameter is higher than one for both tubes for mass velocities lower than 200 kg s−1 m−2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient.  相似文献   

12.
This paper describes experimental results that show the effects of mass velocity and condensation temperature difference on the local heat transfer characteristics during condensation of R407C in a horizontal microfin tube. The experiments were performed at the saturation temperature of 40 °C, the refrigerant mass velocity of 50, 100, 200 and 300 kg m−2 s−1, and the condensation temperature difference of 1.5, 2.5 and 4.5 K. A superficial heat transfer coefficient for the vapor phase was obtained by subtracting the heat transfer resistance of condensate film estimated by using a previously developed theoretical model of film condensation of pure vapor from the overall heat transfer resistance. On the basis of the analogy between heat and mass transfer, an empirical equation for the superficial vapor phase heat transfer coefficient was developed. The heat transfer coefficient predicted by the combination of the previously developed theoretical model of film condensation of pure vapor and the empirical equation of the superficial vapor phase heat transfer coefficient agreed with the measured values with the r.m.s. error of 9.2%.  相似文献   

13.
In this study, condensation heat transfer coefficients (HTCs) were measured on a horizontal plain tube, low fin tube, and Turbo-C tube at the saturated vapor temperature of 39 °C for R22, R407C, and R410A with the wall subcooling of 3–8 °C. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation HTCs were up to 50% lower than those of R22. For R407C, as the wall subcooling increased, condensation HTCs decreased on a plain tube while they increased on both low fin and turbo-C tubes. This was due to the lessening effect of the vapor diffusion film with a rapid increase in condensation rate on enhanced tubes. On the other hand, condensation HTCs of R410A, almost an azeotrope, were similar to those of R22. For all refrigerants tested, condensation HTCs of turbo-C tube were the highest among the tubes tested showing a 3–8 times increase as compared to those of a plain tube.  相似文献   

14.
R1234ze(E) has a GWP<1 and a normal boiling temperature approximately 7.3 °C lower than that of R134a; it represents an interesting candidate for its replacement as working fluid in refrigerating machines. The refrigerant charge minimization in refrigerating and air conditioning equipment is a key issue for the new environmental challenges. Mini microfin tubes represent an optimal solution for both heat transfer enhancement and charge minimization tasks. This paper presents an experimental study of R1234ze(E) flow boiling inside a mini microfin tube with internal diameter at the fin tip of 3.4 mm. The experimental measurements were carried out at constant saturation temperature of 30 °C, by varying the refrigerant mass velocity between 190 kg m−2 s−1 and 940 kg m−2 s−1, the vapour quality from 0.2 to 0.99 at three different heat fluxes: 10, 25, and 50 kW m−2. The experimental results are then compared with those obtained for the more traditional R134a.  相似文献   

15.
This paper presents the investigation of the pressure drop in headers and development of correlation for pressure loss coefficient for single phase flow through round cylindrical headers of parallel MCHXs. The working fluid was compressed air flowing through header with 1–20 m s−1 based on smallest cross section while the velocity through microchannels was in the range 6–30 m s−1. The experimental results indicate that the pressure loss coefficient of inlet header is a linear function of the ratio of velocities through microchannel tube and header, except for the first two microchannel tubes; the pressure loss coefficient of outlet header is a quadratic function of the ratio of velocities through microchannel tube and header, and decreases as the velocities through upstream microchannel tubes increase. Correlations for predicting pressure drop of inlet header and outlet header are developed and agreement for 98% of experimental data is within a ±15 Pa.  相似文献   

16.
In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-410A, and the results are compared with those of R-22. The flat tubes have two internal geometries; one with smooth inner surface and the other with micro-fins. Data are presented for the following range of variables; vapor quality (0.1–0.9), mass flux (200–600 kg/m2s) and heat flux (5–15 kW/m2). Results show that the effect of surface tension drainage on the fin surface is more pronounced for R-22 than R-410A. The smaller Weber number of R-22 may be responsible. For the smooth tube, the heat transfer coefficient of R-410A is slightly larger than that of R-22. For the micro-fin tube, however, the trend is reversed. Possible reasoning is provided considering physical properties of the refrigerants. For the smooth tube, Webb's correlation predicts the data reasonably well. For the micro-fin tube, the Yang and Webb model was modified to correlate the present data. The modified model adequately predicts the data.  相似文献   

17.
Convective boiling heat transfer experiments were performed in horizontal minichannels with binary mixture refrigerant, R-410A. The test section is made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and with lengths of 1500 mm and 3000 mm, respectively, and is uniformly heated by applying electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 10–30 kW m−2, a mass flux range of 300–600 kg m−2 s−1, and quality ranges of up to 1.0. The experimental results were mapped on Wang et al.'s (C.C. Wang, C.S. Chiang, D.C. Lu, Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube, Experimental, Thermal and Fluid Science 15 (1997) 395–405) and Wojtan et al.'s (L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: part I – a new diabatic two-phase flow pattern map, International Journal of Heat and Mass Transfer 48 (2005) 2955–2969) flow pattern maps to observe the flow regimes. Laminar flow appears in flow with minichannels. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A was developed with 11.20% mean deviation; it showed a good agreement between the measured data and the calculated heat transfer coefficients.  相似文献   

18.
Condensation is usually assumed to begin when the bulk enthalpy reaches the saturated vapor enthalpy, which leads to discontinuity of heat transfer coefficient calculation in modeling. This paper addresses the discontinuity by showing the presence of condensation in desuperheating region when the wall temperature decreases below the saturation temperature at any operating condition. The experiments have been conducted with R134a, R1234ze(E) and R32 for mass fluxes of 100–300 kgm−2 s−1, saturation temperatures of 30°C–50 °C and from x = 0.05 to superheat of 50 °C in a horizontal smooth tube with 6.1 mm inner diameter. R134a is observed to have approximately 10% higher and 20% lower HTC compared to R1234ze(E) and R32 respectively. Cavallini correlation predicted the data within an accuracy of 12% while Kondo-Hrnjak correlation predicted HTC for condensation in de-superheating zone within accuracy of 23%.  相似文献   

19.
Flow boiling heat transfer coefficient, pressure drop, and flow pattern are investigated in the horizontal smooth tube of 6.1 mm inner diameter for CO2, R410A, and R22. Flow boiling heat transfer coefficients are measured at the constant wall temperature conditions, while pressure drop measurement and flow visualization are carried out at adiabatic conditions. This research is performed at evaporation temperatures of −15 and −30 °C, mass flux from 100 to 400 kg m−2 s−1, and heat flux from 5 to 15 kW m−2 for vapor qualities ranging from 0.1 to 0.8. The measured R410A heat transfer coefficients are compared to other published data. The comparison of heat transfer coefficients for CO2, R410A, and R22 is presented at various heat fluxes, mass fluxes, and evaporation temperatures. The difference of coefficients for each refrigerant is explained with the Gungor and Winterton [K.E. Gungor, R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transfer 29 (1986) 351–358] correlation based on the thermophysical properties of refrigerants. The Wattelet et al. [J.P. Wattelet, J.C. Chato, B.R. Christoffersen, J.A. Gaibel, M. Ponchner, P.J. Kenny, R.L. Shimon, T.C. Villaneuva, N.L. Rhines, K.A. Sweeney, D.G. Allen, T.T. Heshberger, Heat Transfer Flow Regimes of Refrigerants in a Horizontal-tube Evaporator, ACRC TR-55, University of Illinois at Urbana-Champaign, 1994], and Gungor and Winterton [K.E. Gungor, R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transfer 29 (1986) 351–358] correlations give the best agreement with the measured heat transfer coefficients for CO2 and R410A. Pressure drop for CO2, R410A, and R22 at various mass fluxes, evaporation temperatures and qualities is presented in this paper. The Müller-Steinhagen and Heck [H. Müller-Steinhagen, K. Heck, A simple friction pressure drop correlation for two-phase flow in pipes, Chem. Eng. Process. 20 (1986) 297–308], and Friedel [L. Friedel, Improved friction pressure correlations for horizontal and vertical two-phase pipe flow, in: The European Two-Phase Flow Group Meeting, Ispra, Italy, 1979 (paper E2)] correlation can predict most of the measured pressure drop within the range of ±30%. The relation between pressure drop and properties for each refrigerant is described by applying the Müller-Steinhagen and Heck correlation. The observed two-phase flow patterns for CO2 and R410A are presented and compared with flow pattern maps. Most of the flow patterns can be determined by the Weisman et al. [J. Weisman, D. Duncan, J. Gibson, T. Crawford, Effect of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines, Int. J. Multiphase Flow 5 (1979) 437–462] flow pattern map.  相似文献   

20.
Cross-sectional liquid flow rate distribution of vapour liquid two phase flow of R123 in different herringbone microfin tubes has been measured. Droplet and liquid film flow rates are calculated with the measured data and assumptions for droplet distribution and slip ratio. Heat transfer coefficients of evaporation and condensation in herringbone microfin tubes have been measured using R22. Heat transfer enhancement mechanism by the herringbone microfins is discussed by using the measured data and numerically obtained cross-sectional flow field of a single phase flow. Flow rate of thin liquid film flowing on tube sides is affected by the helix angle and fin height. Larger helix angle and higher fin give thinner film. Liquid film flow rates in tube top and bottom are higher than tube sides. Droplet flow rate is increased with increase of helix angle and fin height, although the effect of fin height is not as pronounced as helix angle. Droplet radial mass velocity to tube side walls is increased with helix angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号