首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
因急冷油中含有固体颗粒,在运行过程中会对泵的过流部件造成磨损,从而影响泵的寿命。基于离散模型(DPM),针对不同粒径、不同浓度的颗粒对叶轮的磨损进行了数值模拟分析。研究结果表明:颗粒粒径保持不变时,随着颗粒质量浓度的增大,急冷油泵过流部件上的磨损位置不变,磨损量增加;颗粒质量浓度保持不变,当粒径从0.025 mm增加到2 mm时,叶片工作面尾缘磨损程度加剧,背面磨损程度降低,前盖板靠近背面一侧磨损减弱,靠近工作面一侧磨损加剧;颗粒粒径与颗粒浓度不变的情况下,通过优化叶片的出口角度,可以适当降低整体的磨损率,达到优化作用。  相似文献   

2.
为提高渣浆泵的抗磨性能并优化泵的设计,采用RNG κ-ε湍流模型和SIMPLEC算法对多工况下渣浆泵叶轮内部清水流场进行了数值计算,得到叶片表面相对速度矢量分布,分析了叶片表面回流、旋涡现象;基于单颗粒动力学模型,采用拉格朗日法计算了多工况下固相颗粒的运动轨迹,分析不同粒径颗粒对叶片表面磨损的影响。结果表明:叶片压力面进口在大流量工况下开始出现回流,而叶片吸力面进口则在小流量工况下回流、旋涡严重,叶片进口的回流、旋涡不仅容易引起NPSHr增高,诱发空化现象,还会导致颗粒聚集、反复冲击该区域;在小流量工况下,叶片压力面出口和吸力面出口均出现大区域的回流,甚至延伸至叶片中段,随着流量增大,回流和旋涡区域逐渐缩小,由此可见叶片出口在小流量工况下的磨损比较严重;其他因素一定时,固液混合物的流量越小,颗粒在进入叶片流道前停留的时间越长,导致颗粒与叶片头部的碰撞概率增大;随着颗粒直径增大,颗粒向叶片压力面靠近的趋势越明显,与压力面的碰撞机会也增多,从模拟结果可以看到,该叶轮对1mm以上的大颗粒适应性不好,在设计流量工况下,0.5~1mm粒径范围内颗粒适应性最好。  相似文献   

3.
流固耦合作用对轴流泵内部流场影响的数值计算   总被引:2,自引:0,他引:2  
采用雷诺时均Navier-Stokes方程和RNG k-ε双方程湍流模型,基于弹性体结构动力学方程,对轴流泵内部流场和叶轮结构响应进行多工况双向同步耦合求解,研究了流固耦合作用对轴流泵内部流场的影响。结果表明:考虑流固耦合作用后,叶片工作面和背面的压差有所减小,说明叶片性能有所下降;叶片出口处的二次回流现象有所加剧;计算得到的轴流泵水力性能参数更加接近试验值,说明考虑流固耦合后的流场更加接近于真实流场。  相似文献   

4.
颗粒浓度对离心风机磨损的影响规律数值研究   总被引:1,自引:0,他引:1  
当含尘气体经过除尘设备净化后,粉尘粒径已经很小,在两相流中更多的表现出流动性,颗粒浓度成为影响叶轮磨损的重要因素。由此,可基于雷诺应力湍流模型和Tabakoff and Grant的磨损模型,对离心风机叶轮中气固两相流进行数值计算,得到不同粒径的颗粒在不同的入口浓度条件下对风机压力面的磨损位置、形态和磨损率。研究结果表明,磨损位置与粒径大小有关,颗粒数量浓度对磨损率的影响远高于质量浓度对磨损率的影响。  相似文献   

5.
李晶  金慧  朱有地  胡凯  张罡肇 《机电工程》2023,(4):600-606+624
渣浆泵工作过程中,浆液中的硬质固体颗粒会对泵壁面造成强烈的冲蚀磨损,导致渣浆泵效率降低,使用寿命缩短。为了解决渣浆泵效率较低、磨损速度过快等问题,采用变角螺旋线法(VASM),对渣浆泵叶轮叶片型线进行了改型设计,研究了不同颗粒粒径、浓度、密度等对不同型线渣浆泵性能的影响。首先,介绍了变角螺旋线方法和离散相模型,对数值计算模型进行了验证;然后,在叶轮前、后盖板和叶片型线不变的前提下,采用变角螺旋线法对LC100/350型渣浆泵叶片进行了改型设计;采用雷诺时均N-S方程、RNG k-ε湍流模型和SIMPLE耦合算法和离散相模型(DPM)对渣浆泵内部固液两相流动进行了模拟,以额定工况下泵的扬程、效率、磨损强度为改进性能指标,评估了改进效果;最后,通过CFD数值模拟方法,分析和对比了改型后各种叶型的渣浆泵扬程、效率和叶轮磨损强度。研究结果表明:相对于渣浆泵叶轮的原叶型,采用变角螺旋线法设计的渣浆泵叶轮叶片能够明显地提高渣浆泵的效率,降低叶轮的磨损强度,且对渣浆泵的扬程影响较小。虽然颗粒粒径和浓度的增大会使效率降低,磨损强度增大,颗粒粒径和颗粒浓度的变化不影响最优叶型的选择;综合考虑渣浆泵的水力...  相似文献   

6.
郭爱华 《机电工程》2010,27(8):43-47
为解决和预测固体颗粒对超高速离心叶轮的冲击磨损问题,以多相流理论为基础,采用了雷诺应力模型结合颗粒轨道模型的方法,通过对超高速离心叶轮内气固两相湍流场的计算,得到了颗粒在叶轮中的运动轨迹;并用CFX对不同粒径的固体颗粒在超高速离心叶轮内部流场中的运动轨迹进行了数值模拟。模拟结果与已有实验结果吻合,说明采用雷诺应力湍流模型能准确描述超高速离心叶轮中固体颗粒的运动轨迹。  相似文献   

7.
采用RNG κ-ε湍流模型,使用Fluent软件,通过定常数值模拟得到不同工况下流量计表面的磨损率分布,分析磨损规律和磨损位置。结果表明:流场中磨损率和DPM质量浓度分布受进口流速和固体颗粒参数设置影响较大。随着进口流速、固体颗粒体积分数和固体颗粒粒径增大,流量计表面磨损率增大,磨损主要集中在喉部入口处,最大磨损率约为1.0×10-8 kg/(m2·s)。  相似文献   

8.
固体颗粒对水力旋流器冲蚀磨损特性的影响   总被引:1,自引:0,他引:1  
针对工业污水处理系统中水力旋流器壁面的冲蚀磨损问题,采用FLUENT软件中RSM模型和DPM模型模拟水力旋流器内液、固两相流的流动情况,并以Grant和Tabakoff碰撞模型求解器壁冲蚀磨损速率。研究了不同颗粒流速、粒径和质量流量条件下器壁冲蚀磨损规律以及最大冲蚀磨损位置。结果表明:旋流器壁面最大冲蚀磨损率随着颗粒流速的增大而呈指数递增,与质量流量呈正相关关系,但与颗粒粒径呈不完全线性增长关系;旋流器壁面冲蚀磨损率随着颗粒流速、粒径和质量流量的改变而不同,其中颗粒流速变化的影响最大、质量流量次之、粒径的影响最小;固体颗粒碰撞和磨削旋流器壁面而引起局部磨损,并且影响最大冲蚀磨损区域的出现位置。  相似文献   

9.
为分析叶轮流道结构对泥泵内部流场及壁面磨损的影响,在原叶轮造型的基础上,通过修改叶轮出口形状及叶片型线,提出了4种叶轮造型,并对5种造型进行欧拉-欧拉固液两相流瞬态计算。通过对比分析叶轮内部流场、壁面压力以及壁面剪切力,定性选择一种流场更均匀、壁面压力与剪切力较低的新叶轮造型,并引入离散相模型(Discrete Phase Model,DPM),追踪原叶轮和新叶轮内的颗粒轨迹,同时对比分析原叶轮与新叶轮的壁面平均磨损率及原叶轮在工程中的实际磨损情况。研究结果表明:两种叶轮的磨损位置大致相同,磨损集中在叶片进口边以及后叶墙面靠近叶片进口位置,但新叶轮的平均磨损率低于原叶轮;原叶轮实际磨损与模拟结果基本相符,验证了数值方法可靠性。  相似文献   

10.
叶片数对轴流泵压力脉动的影响研究   总被引:1,自引:0,他引:1  
为了分析叶轮叶片数对轴流泵压力脉动特性的影响,基于标准k—ε湍流模型和N—S方程,在现有的南水北调工程优秀轴流泵水力模型的基础上,通过改变叶轮叶片数对各方案模型进行了数值计算。通过试验手段分析不同位置的压力均方根值及其变化趋势,并将试验结果与数值计算结果进行对比,验证了数值计算的可靠性。研究成果为轴流泵叶片数的选择及轴流泵的稳定运行提供了一定的理论依据。  相似文献   

11.
基于Eulerian多相流模型和RNG κ-ε两方程湍流模型对旋流泵内的液固两相流场进行了数值模拟,获得了不同粒径、浓度时泵内的颗粒分布特性及对泵性能的影响。研究结果表明:固体颗粒进入泵内后主要集中于无叶腔内,无叶腔中的颗粒分布以泵轴为中心呈现一定的轴对称分布,随着粒径的增大,颗粒在无叶腔内壁面聚集的更加明显,随着浓度的增大,颗粒在无叶腔内的分布规律几乎没有变化,随着流量的增大,无叶腔中心部分颗粒浓度几乎不变的区域扩大;在叶轮内,叶片工作面附近的颗粒浓度要大于叶片背面的;随着粒径及浓度的增大旋流泵的效率会降低,随着粒径的增大泵的扬程会降低。  相似文献   

12.
为获得旋流泵内更为符合物理真实的液固两相流动特征,在传统欧拉(Euler)双流体模型基础上加载群体平衡模型(PBM),以考虑实际存在的颗粒聚并、破碎等动力学行为,与CFD耦合计算了不同流量、颗粒粒径及浓度下的液固两相流场,分析了颗粒存在对泵外特性的影响规律。计算结果表明:从进口到出口,叶片背面附近颗粒粒径明显增大;在叶轮出口位置,同一半径上,从叶片工作面到背面附近存在粒径梯度;在外缘部,沿轴向形成粒径梯度。与Euler模型计算结果对比发现:加载PBM模型后,颗粒总体浓度分布特征存在差异;同一轴截面上,颗粒浓度在中心部的分布基本相同,而在中间和外缘部位置出现差异。PBM模型计算得到的泵扬程、效率曲线更接近于实验值,证明基于CFD-PBM耦合计算的预测精度更符合实际。  相似文献   

13.
重型平板车液压系统与发动机功率匹配研究   总被引:3,自引:0,他引:3  
根据重型平板车液压系统功率分配的特点,从发动机与泵的功率匹配、发动机最佳工作点的选取及负载与泵的匹配等环节分析了重型平板车液压系统与发动机功率匹配原理。在充分考虑液压系统效率及发动机载荷的基础上,提出了重型平板车液压系统与发动机功率匹配的实现方案及节能控制规律。TMZ100型重型平板车现场试验表明,此功率匹配系统满足该重型平板车操控性能的要求。  相似文献   

14.
为研究颗粒性质对颗粒在叶片圆盘泵叶轮内分布规律的影响,将叶片圆盘泵叶轮分为无叶区和叶片区,采用多重参考坐标系法模拟流体在叶片区和无叶区内的流动。采用Eulerian多相流模型、RNG k-ε湍流模型与SIMPLEC算法,利用Fluent软件对叶片圆盘泵内固液两相湍流进行数值模拟。对不同直径、不同浓度及不同密度颗粒在叶轮叶片区和无叶区的分布及颗粒在叶轮表面分布规律进行分析。结果表明:颗粒密度和颗粒直径对颗粒分布影响较大,颗粒密度、粒径越大,颗粒越难被液相带动加速而处在液相相对速度较慢的无叶区,随着颗粒密度、粒径的增大,叶轮表面颗粒浓度分布变化趋缓;颗粒浓度对颗粒在无叶区和叶片区分布影响较小;叶片表面颗粒浓度大于轮盘表面颗粒浓度,从动轮上轮盘表面和叶片表面颗粒浓度要小于相应主动轮表面颗粒浓度。  相似文献   

15.
The vortex pump is suitable for salt solution transportation. But the salt-out flow mechanism in the pump has not been understood fully. Salt-out layer formation and growth rate are closely related to crystal particle motion and concentration distribution. Study on the particle hydrodynamic characteristics in the pump volute becomes a key problem, because the crystal particles are mainly distributing in this zone after they enter the pump. Phase Doppler particle analyzer(PDPA) is used to measure the two-phase flow field in a model pump volute to get more understanding about the salt-out phenomenon. The crystal particle velocities are obtained in all three peripheral, radial and axial directions. Particle size and particle number density(PND) measurements are also performed in the experiment. Results are presented and discussed along the radial direction under different pump operating conditions, as well as various axial measurement positions. It is found that particle velocity gradient of peripheral component varies with the pump discharge. There is a turning point of relation between peripheral velocity component and discharge. Radial flow velocity curves look like a saddle shape and velocity magnitudes are changing greatly with the discharge. The non-equilibrium velocity feature between liquid and solid phase on this direction is also remarkable. Particles flow into the impeller at radial position R1, and the axial velocity component increases in this region. The particle size curve shows an open-up parabola distribution. The largest particles are distributing near the casing peripheral wall. As flow rate increases, accordingly PND increases. It also grows up in the axial-outward direction towards the suction cover. Crystal particle aggregation phenomenon can be revealed from the analysis of particle size and PND distribution, and the aggregation region is determined as well. Research results are helpful for optimal design of this kind of pump preventing salt-out.  相似文献   

16.
串列式双级轴流泵性能的数值模拟   总被引:1,自引:0,他引:1  
为了揭示串列泵的内部流动机理及其能量特性,采用两个具有试验结果的轴流式叶轮和一新设计的导叶串联组成了一串列式轴流泵模型。应用Pro-E对该串列泵进行三维实体造型,用数值模拟的方法计算泵内的流场。数值计算采用NUMECA商业软件。在不同的工况条件下获得前后叶轮内部的速度矢量分布。基于流场计算结果,预测包括扬程、效率和轴功率在内的串列泵性能。将数值计算的结果与原叶轮的试验结果进行对比并与首级叶轮比较,串列轴流泵次级叶轮压力面和吸力面的速度具有较大的差值。与一般的轴流泵比较,串列式轴流泵具有比较宽的高效区,最优工况点向大流量区域偏移,其轴功率不再像普通轴流泵那样随流量的增加而减小。为了分析前后叶轮的相互作用,预测不同的后叶轮叶片偏转角条件下的串列泵性能,结果表明后叶轮的叶片偏转角对串列泵性能有重大的影响。  相似文献   

17.
旋流泵内盐析两相流场的计算及试验研究   总被引:5,自引:1,他引:4  
为研究流体机械内部伴有盐析的液固两相流动情况,自行设计了旋流式模型泵,采用双流体模型计算了该泵在最优工况下的氯化钠盐析两相流场,并采用先进的激光相位多普勒粒子测速仪测量了泵无叶腔及叶轮内部盐析两相流的三维速度场。将试验结果与计算结果进行对比,验证了计算模型的适用性,并给出了误差分析。通过对试验测得的周向、轴向、径向速度及其对应的脉动速度分布曲线讨论,初步揭示了该型泵内盐析两相流动特征。在整个流道内,盐析晶体颗粒大部分集中于无叶腔,且分布较均匀;进入叶轮后向叶片工作面靠拢;颗粒浓度最低处是在叶轮进口叶片背面靠近叶轮后盖板附近;液固两相在叶轮与无叶腔中的周向速度分布差异明显;两相间速度及脉动速度有滑移,但差异总体上并不显著。  相似文献   

18.
基于CFX采用数值模拟方法计算轴流泵导叶进口边与叶轮叶片出口边的平行间距S的变化对泵装置性能的影响。在质量守恒定理和动量守恒定理的基础上,应用Navier-Stoke方程和标准k-ε湍流模型,通过对轴流泵全流道三维湍流数值模拟,求解了导叶出口处的速度场和压力场。分析了S=9mm,S=12mm,S=15mm 3种情况下,流量、扬程、功率和效率的关系,研究了轴流泵导叶进口边与叶轮叶片出口边的平行间距的变化对泵装置性能的影响。  相似文献   

19.
双流道泵输送固液介质的水力性能及磨损试验研究   总被引:4,自引:1,他引:3  
为分析固液混合物对双流道输送泵性能的影响,采用平均粒径为10 mm和36 mm的固体颗粒对双流道泵在不同浓度和流量下开展输送固液两相介质的水力性能试验,并对泵的磨损进行分析。水力试验结果表明,在一定的流量下,随着输送混合物中固体颗粒浓度的增加,入口表压、出口表压、扬程及效率呈递减趋势。 与输送清水时比较,当输送固液两相介质时,随着流量的增大,轴功率上升较快,扬程的下降量在不同流量下几乎相同;效率曲线在不同流量下比输送清水时效率要低,差值随着流量的增大而增大。在同流量同浓度比工况下,泵的进出口压力、扬程和汽蚀性能在输送较大直径固体颗粒时,明显下降。通过对双流道泵磨损的分析表明,叶轮磨损部位主要在前盖板外缘、流道内偏前盖板的流道表面、压力面进口边,压力面的磨损区域呈三角形;泵体的磨损部位主要在周壁、隔舌及泵体口环处。本研究可为固液两相双流道离心泵的理论研究与设计应用提供试验依据。  相似文献   

20.
采用计算流体动力学理论对多级离心泵整机流场进行了建模,分析了多级离心泵口环间隙对整机流场的影响,得到了多级离心泵效率随口环磨损变化的曲线,引入了轴向振动指标,将效率与轴向振动相结合,提出一种口环磨损量实时监测评估方法。建立了多级离心泵实验台,将实验结果与模拟结果相对比,验证了所提出方法的可行性。通过实验分析了口环磨损故障与叶轮腐蚀以及堵塞故障的特点,排除了叶轮腐蚀及堵塞对口环磨损实时监测的影响,完善了所提出方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号