首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution.Plasma was generated in the gas space above the water interface under atmospheric pressure.Discharge characteristics were analyzed by voltage-current waveforms.Effects of applied voltage,initial conductivity,and initial concentration were also analyzed.Congo red discoloration increased with increased applied voltage and decreased conductivity.The initial conductivity significantly influenced the Congo red discoloration.Under the same conditions,the highest discoloration rate was obtained at 25 mg/L.The presence of ferrous ions in the solutions had a substantial positive effect on Fenton dye degradation and flocculation.At an applied voltage of 20 kV,about 100%of dye was degraded after 4 min of Fe2+/DBD treatment.Results showed that adding a certain dosage of hydrogen peroxide to the wastewater could enhance the discoloration rate.Possible pathways of Congo red discoloration by DBD plasma were proposed based on GC/MS,FTIR,and UV-vis spectroscopy analyses.  相似文献   

2.
A double-chamber gas-liquid phase DBD reactor (GLDR), consisting of a gas-phase discharge chamber and a gas-liquid discharge chamber in series, was designed to enhance the degradation of benzene and the emission of NOx. The performance of the GLDR on discharge characteristics, reactive species production and benzene degradation was compared to that of the single-chamber gas phase DBD reactor (GPDR). The effects of discharge gap, applied voltage, initial benzene concentration, gas flow rate and solution conductivity on the degradation and energy yield of benzene in the GLDR were investigated. The GLDR presents a higher discharge power, higher benzene degradation and higher energy yield than that of the GPDR. NO2 emission was remarkably inhibited in the GLDR, possibly due to the dissolution of NO2 in water. The benzene degradation efficiency increased with the applied voltage, but decreased with the initial concentration, gas flow rate, and gas discharge gap, while the solution conductivity presented less influence on benzene degradation. The benzene degradation efficiency and the energy yield reached 61.11% and 1.45 g kWh–1 at 4 mm total gas discharge gap, 15 kV applied voltage, 200 ppm benzene concentration, 0.2 L min−1 gas flow rate and 721 μS cm−1 water conductivity. The intermediates and byproducts during benzene degradation were detected by FT-IR, GC-MS and LC-MS primarily, and phenols, COx, and other aromatic substitutes, O3, NOx, etc, were determined as the main intermediates. According to these detected byproducts, a possible benzene degradation mechanism was proposed.  相似文献   

3.
Electric discharge in and in contact with water can accompany ultraviolet (UV) radiation and electron impact,which can generate a large number of active species such as hydroxyl radicals (OH),oxygen radical (O),ozone (O3) and hydrogen peroxide (H2O2).In this paper,a non thermal plasma processing system was established by means of dielectric barrier discharge (DBD) arrays in water mist spray.The relationship between droplet size and water content was examined,and the effects of the concentrations of oxides in both treated water and gas were investigated under different water content and discharge time.The relative intensity of UV spectra from DBD in water mist was a function of water content.The concentrations of both O3 and nitrogen dioxide (NO2) in DBD room decreased with increasing water content.Moreover,the concentrations of H2O2,O3 and nitrogen oxides (NOx) in treated water decreased with increasing water content,and all the ones enhanced after discharge.The experimental results were further analyzed by chemical reaction equations and commented by physical principles as much as possible.At last,the water containing phenol was tested in this system for the concentration from 100 mg/L to 9.8 mg/L in a period of 35 min.  相似文献   

4.
Quinoline is widely used in the production of drugs as a highly effective insecticide, and its derivatives can also be used to produce dyes. It has a teratogenic carcinogen to wildlife and humans once entering into the aquatic environment. In this study, the degradation mechanism of quinoline in drinking water by a strong ionization dielectric barrier discharge(DBD) lowtemperature plasma with large volume was explored. High concentration of hydroxyl radical(·OH)(0.74 mmol l-1) and ozone(O3)(58.2 mg l-1) produced by strongly ionized discharge DBD system were quantitatively analyzed based on the results of electron spin resonance and O3 measurements. The influencing reaction conditions of input voltages, initial p H value, ·OH inhibitors, initial concentration and inorganic ions on the removal efficiency of quinoline were systematically studied. The obtained results showed that the removal efficiency and TOC removal of quinoline achieved 94.8% and 32.2%, degradation kinetic constant was 0.050 min-1 at 3.8 k V and in a neutral p H(7.2). The proposed pathways of quinoline were suggested based on identified intermediates as hydroxy pyridine, fumaric acid, oxalic acid, and other small molecular acids by high-performance liquid chromatography/tandem mass spectrometry analysis. Moreover, the toxicity analysis on the intermediates demonstrated that its acute toxicity, bioaccumulation factor and mutagenicity were reduced. The overall findings provided theoretical and experimental basis for the application of a high capacity strong ionization DBD water treatment system in the removal of quinoline from drinking water.  相似文献   

5.
A combined method of granular activated carbon (GAC) adsorption and bipolar pulse dielectric barrier discharge (DBD) plasma regeneration was employed to degrade phenol in water. After being saturated with phenol, the GAC was filled into the DBD reactor driven by bipolar pulse power for regeneration under various operating parameters. The results showed that different peak voltages, air flow rates, and GAC content can affect phenol decomposition and its major degradation intermediates, such as catechol, hydroquinone, and benzoquinone. The higher voltage and air support were conducive to the removal of phenol, and the proper water moisture of the GAC was 20%. The amount of H2O2 on the GAC was quantitatively determined, and its laws of production were similar to phenol elimination. Under the optimized conditions, the elimination of phenol on the GAC was confirmed by Fourier transform infrared spectroscopy,and the total removal of organic carbons achieved 50.4%. Also, a possible degradation mechanism was proposed based on the HPLC analysis. Meanwhile, the regeneration efficiency of the GAC was improved with the discharge treatment time, which attained 88.5% after 100 min of DBD processing.  相似文献   

6.
Dielectric barrier discharge (DBD) has been extensively investigated in the fields of environment and energy, whereas its practical implementation is still limited due to its unsatisfactory energy efficiency. In order to improve the energy efficiency of DBD, a novel double dielectric barrier discharge (NDDBD) reactor with high field emission and secondary electron emission was developed and compared with traditional DDBD (TDDBD) configuration. Firstly, the discharge characteristics of the two DDBD reactors were analyzed. Compared to TDDBD, the NDDBD reactor exhibited much stronger discharge intensity, higher transferred charge, dissipated power and gas temperature due to the effective utilization of cathode field emission and secondary electron emission. Subsequently, toluene abatement performance of the two reactors was evaluated. The toluene decomposition efficiency and mineralization rate of NDDBD were much higher than that of TDDBD, which were 86.44%–100% versus 28.17%–80.48% and 17.16%–43.42% versus 7.17%–16.44% at 2.17–15.12 W and 1.24–4.90 W respectively. NDDBD also exhibited higher energy yield than TDDBD, whereas the overall energy constant ${k}_{{\rm{overall}}}$ of the two reactors were similar. Finally, plausible toluene decomposition pathway in TDDBD and NDDBD was suggested based on organic intermediates that generated from toluene degradation. The finding of this study is expected to provide reference for the design and optimization of DBD reactor for volatile organic compounds control and other applications.  相似文献   

7.
A synergistic system of water falling film dielectric barrier discharge(DBD) plasma and persulfate(PS) was set up and used for oxidizing ciprofloxacin(CIP) in water. Results of reactive species formation in the DBD-only system as well as the DBD–PS system verified the PS activation in the DBD system. Influencing factors on CIP degradation and the degradation process were also been studied. The obtained results showed that the presence of PS could greatly improve the degradation and mineralizatio...  相似文献   

8.
1. IntroductionArgon plasma has been frequently used for mate-rial processing and film fabrication processes [1l [21 [31.The efficiency of these processes has very close rela-tion with plasma parameters [4][5], such as ion den-sity, electron temperature and ion energy dlstrlbu-tion. Lots of research has been done on the relation-ship between efficiency and availability of materialprocessing and plasma parameters [6][7].Both lCP dlscharge and DBD discharge are newtype plasma systems developed…  相似文献   

9.
A wastewater treatment system was established by means of pulsed dielectric barrier discharge(DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet(UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity;under the highest conductivity condition, the degradation rate could rise to 99%.  相似文献   

10.
Pulsed discharge in water and over water surfaces generates ultraviolet radiation,local high temperature,shock waves,and chemical reactive species,including hydroxyl radicals,hydrogen peroxide,and ozone.Pulsed discharge plasma (PDP) can oxidize and mineralize pollutants very efficiently,but high energy consumption restricts its application for industrial wastewater treatment.A novel method for improving the energy efficiency of wastewater treatment by PDP was proposed,in which peroxydisulfate (PDS) was added to wastewater and PDS was activated by PDP to produce more strong oxidizing radicals,including sulfate radicals and hydroxyl radicals,leading to a higher oxidation capacity for the PDP system.The experimental results show that the increase in solution conductivity slightly decreased the discharge power of the pulse discharge over the water surface.An increase in the discharge intensity improved the activation of PDS and therefore the degradation efficiency and energy efficiency of p-nitrophenol (PNP).An increase in the addition dosage of PDS greatly facilitated the degradation of PNP at a molar ratio of PDS to PNP of lower than 80∶1,but the performance enhancement was no longer obvious at a dosage of more than 80∶1.Under an applied voltage of 20 kV and a gas discharge gap of 2 rmm,the degradation efficiency and energy efficiency of the PNP reached 90.7% and 45.0 mg kWh-1 for the plasma/PDS system,respectively,which was 34% and 18.0 mg kWh-1 higher than for the discharge plasma treatment alone.Analysis of the physical and chemical effects indicated that ozone and hydrogen peroxide were important for PNP degradation and UV irradiation and heat from the discharge plasma might be the main physical effects for the activation of PDS.  相似文献   

11.
Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy(OES)with different discharge powers at the gas–liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary longlived reactive species such as H_2O_2, NO_3~- and O_3 are measured based on plasma treatment time.After 5 min of discharge treatment, the concentration of H_2O_2, NO_3~-, and O_3 increased from 0 mg?·?L~(-1) to 96 mg?·?L~(-1), 19.5 mg?·?L~(-1), and 3.5 mg?·?L~(-1), respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.  相似文献   

12.
Sulfamethoxazole (SMX) is an antibiotic and widely present in aquatic environments, so it presents a serious threat to human health and sustainable development. A dielectric barrier discharge (DBD) plasma jet was utilized to degrade aqueous SMX, and the effects of various operating parameters (working gas, discharge power, etc) on SMX degradation performance were studied. The experimental results showed that the DBD plasma jet can obtain a relatively high degradation efficiency for SMX when the discharge power is high with an oxygen atmosphere, the initial concentration of SMX is low, and the aqueous solution is under acidic conditions. The reactive species produced in the liquid phase were detected, and OH radicals and O3 were found to play a significant role in the degradation of SMX. Moreover, the process of SMX degradation could be better fitted by the quasi-first-order reaction kinetic equation. The analysis of the SMX degradation process indicated that SMX was gradually decomposed and 4-amino benzene sulfonic acid, benzene sulfonamide, 4-nitro SMX, and phenylsulfinyl acid were detected, and thus three possible degradation pathways were finally proposed. The mineralization degree of SMX reached 90.04% after plasma treatment for 20 min, and the toxicity of the solution fluctuated with the discharge time but eventually decreased.  相似文献   

13.
Discharge plasmas in air can be accompanied by ultraviolet(UV) radiation and electron impact,which can produce large numbers of reactive species such as hydroxyl radical(OH·),oxygen radical(O·),ozone(O3),and nitrogen oxides(NOx),etc.The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds(VOCs) treatment with the discharge plasmas.In this paper,we propose a volume discharge setup used to purify formaldehyde in air,which is configured by a plate-to-plate dielectric barrier discharge(DBD) channel and excited by an AC high voltage source.The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde.The energy efficiency ratios(EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel,and the most desirable processing effect is the gas flow velocity within the range from2.50 to 3.33 m s-1.Moreover,the EERs of both the generated dosages of oxides(O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell.Additionally,the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density,and the peak of the function is appeared in the range from 273.5 to 400.0 W l-1.This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD,and it is helpful in the applications of VOCs removal by using discharge plasma.  相似文献   

14.
Dielectric barrier discharges (DBDs) have been widely used in ozone synthesis, materials surface treatment, and plasma medicine for their advantages of uniform discharge and high plasma-chemical reactivity. To improve the reactivity of DBDs, in this work, the O2 is added into Ar nanosecond (ns) pulsed and AC DBDs. The uniformity and discharge characteristics of Ar ns pulsed and AC DBDs with different O2 contents are investigated with optical and electrical diagnosis methods. The DBD uniformity is quantitatively analyzed by gray value standard deviation method. The electrical parameters are extracted from voltage and current waveforms separation to characterize the discharge processes and calculate electron density ne. The optical emission spectroscopy is measured to show the plasma reactivity and calculate the trend of electron temperature Te with the ratio of two emission lines. It is found that the ns pulsed DBD has a much better uniformity than AC DBD for the fast rising and falling time. With the addition of O2, the uniformity of ns pulsed DBD gets worse for the space electric field distortion by O2, which promotes the filamentary formation. While, in AC DBD, the added O2 can reduce the intensity of filaments, which enhances the discharge uniformity. The ns pulsed DBD has a much higher instantaneous power and energy efficiency than AC DBD. The ratio of Ar emission intensities indicates that the Te drops quickly with the addition of O2 both ns pulsed and AC DBDs and the ns pulsed DBD has an obvious higher Te and ne than AC DBD. The results are helpful for the realization of the reactive and uniform low temperature plasma sources.  相似文献   

15.
A kind of dielectric barrier discharge(DBD) device composed of water electrodes with 3×3forms can produce large-area low-temperature plasmas at atmospheric pressure.To reflect the discharge characteristics of DBD better,a dynamic simulation model,which is based on the voltage controlled current source(CCS),is established,then the established model in Matlab/Simulink is used to simulate the DBD in air.The voltage-current waves and Lissajous at a voltage of 10 kV,11 kV and 12 kV peak value with a frequency of 15 kHz are studied.The change of the discharge power of DBD with a different amplitude and frequency of applied voltage is also analyzed.The result shows the voltage-current waves,Lissajous and discharge power of DBD under different conditions from the simulation agree well with those of the experiment.In addition,we propose a method to calculate the dielectric barrier capacitance C_d and the gap capacitance C_g,which is valid through analyzing the variation of capacitance at different voltage amplitudes.  相似文献   

16.
Energy efficiency limits the application of atmospheric pressure dielectric barrier discharge(DBD),such as air purification,water treatment and material surface modification.This article focuses on the electrical and optical effects of the DBD under three square wave pulses polarities-positive,negative and bipolar.The result shows that under the same voltage with the quartz glass medium,the discharge efficiency of bipolar polarity pulse is the highest due to the influence of deposited charge.With the increase of air gap distance from 0.5 to 1.5 mm,average power consumed by the discharge air gap and discharge efficiency decrease obviously under alumina,and increase,and then decrease under quartz glass and polymethyl methacrylate(PMMA).Through spectrum diagnosis,in the quartz glass medium,the vibration temperature is the highest under negative polarity pulse excitation.Under bipolar pulse,the vibration temperature does not change significantly with the change of air gap distance.For the three dielectric materials of quartz glass,alumina and PMMA,the molecular vibration temperature is the highest under the quartz glass medium with the same voltage.When the gap spacing,pulse polarity or dielectric material are changed,the rotational temperature does not change significantly.  相似文献   

17.
Dielectric barrier discharge (DBD) cold plasma at atmospheric pressure was used for preparation of copper nanoparticles by reduction of copper oxide (CuO). Power X-ray diffraction (XRD) was used to characterize the structure of the copper oxide samples treated by DBD plasma. Influences of H2 content and the treating time on the reduction of copper oxide by DBD plasma were investigated. The results show that the reduction ratio of copper oxide was increased initially and then decreased with increasing H2 content, and the highest reduction ratio was achieved at 20% H2 content. Moreover, the copper oxide samples were gradually reduced by DBD plasma into copper nanoparticles with the increase in treating time. However, the average reduction rate was decreased as a result of the diffusion of the active hydrogen species. Optical emission spectra (OES) were observed during the reduction of the copper oxide samples by DBD plasma, and the reduction mechanism was explored accordingly. Instead of high-energy electrons, atomic hydrogen (H) radicals, and the heating effect, excited-state hydrogen molecules are suspected to be one kind of important reducing agents. Atmospheric-pressure DBD cold plasma is proved to be an efficient method for preparing copper nanoparticles.  相似文献   

18.
A catalytic approach using a synthesized iron and manganese oxide-supported granular activated carbon (Fe-Mn GAC) under a dielectric barrier discharge (DBD) plasma was investigated to enhance the degradation of oxytetracycline (OTC) in water. The prepared Fe-Mn GAC was characterized by x-ray diffraction and scanning electron microscopy, and the results showed that the bimetallic oxides had been successfully spread on the GAC surface. The experimental results showed that the DBD + Fe-Mn GAC exhibited better OTC removal efficiency than the sole DBD and DBD + virgin GAC systems. Increasing the fabricated catalyst and discharge voltage was favorable to the antibiotic elimination and energy yield in the hybrid process. The coupling process could be elucidated by the ozone decomposition after Fe-Mn GAC addition, and highly hydroxyl and superoxide radicals both play significant roles in the decontamination. The main intermediate products were identified by HPLC-MS to study the mechanism in the collaborative system.  相似文献   

19.
Gaseous naphthalene has been removed by air plasma generated by pulsed corona discharges at 100°C (LSPM) and dielectric barrier discharges (DBD) up to 250 °C (LPGP) in different reactors geometries. Naphthalene has been chosen as one of unburned hydrocarbon present in exhaust gas engine during the cold start of vehicles. The comparison between the different discharge geometries has been possible using the specific input energy (SIE) as relevant parameter for pollutant removal process control considering the differences in the electrical characteristics and the differences of gas flow. The best naphthalene degradation is obtained in the wire-to cylinder (WTC) corona discharge and the stem-to-cylinder DBD with an energy cost β respectively of 10 and 20 J L -1. The main by-products issues of the naphthalene oxidation are CO2 and CO reaching 45% in Multi-Pin-to-Plan corona discharge. We detected polyaromatic hydrocarbons in the gas phase (few ppm) and in the solid phase deposited in the reactors. The introduction of water in the discharges promotes the naphthalene degradation by OH-atom, which has better oxidising power than O-atom in dry air.  相似文献   

20.
The effect on the germination and seedling growth of radish (Raphanus sativus) seeds were examined employing a dielectric barrier discharge (DBD) at atmospheric pressure and room temperature for various treatment time. DBD plasma using argon gas of flow rate 2 l m−1 was employed in this study. Radish seeds were treated with DBD plasma for 1–5 min, respectively. Germination characteristics, seedling growth parameters, the contact angle of the seed coat, water uptake capacity, mass loss, the temperature of the seeds, chlorophyll, and carotenoid contents of the seedlings were measured before and after the DBD plasma treatments. Plasma treatment of radish seeds significantly increased germination-related characters, including germination percentage, fresh and dry weight, vigor index, and total carotenoids contents. However, the cumulative production rate was found to be decreased. Results from the experiment indicate an acceleration in the water uptake of the radish seeds and make the seed surface hydrophilic by plasma treatment. Scanning electron microscopy analysis showed that etching effects on the seed coat occurred after the argon plasma treatments, which affected the wettability of the radish seed. The experimental findings showed that seeds being treated by DBD plasma for 2 and 3 min had a positive effect on the germination and seedling growth of radish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号