首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
淀粉接枝共聚物是一种新型功能性材料。以机械活化淀粉(mSt)为接枝母体,丙烯酰胺(AM)和丙烯酸(AA)为接枝单体,研究了在淀粉/单体/乳化剂/油/水反相乳液体系中引发机械活化淀粉与丙烯酰胺/丙烯酸接枝共聚反应的动力学,考察了引发剂浓度[I]、单体浓度[M]、淀粉乳浓度[mSt]和乳化剂浓度[E]等因素对表观聚合速率Rp的影响。结果表明,在本文考察范围内动力学关系式为Rp∝[mSt]1.5[M]1.7[I]0.9[E]0.92,单体浓度和淀粉乳液浓度对聚合反应速率影响显著,聚合反应速率随体系温度升高而加快,在45~60℃范围内,聚合反应的表观活化能为89.5kJ/mol,聚合过程中单基终止与双基终止反应同时存在。  相似文献   

2.
以过硫酸钾为引发剂,十二烷基硫酸钠为乳化剂,在β-环糊精(β-CD)存在下进行乳液聚合动力学研究,考察了引发剂浓度、乳化剂浓度、β-环糊精浓度以及聚合温度对聚合反应速率的影响,测定了各项反应级数和聚合表观活化能。结果表明,聚合反应速率随引发剂浓度、乳化剂浓度和聚合温度的升高而加快,随β-环糊精浓度的升高先增加后降低,在β-CD浓度≤1.555×10-3 mol/L时,聚合反应动力学关系式为Rp∝[KPS]0.5277[SDS]0.5631[β-CD]0.9987,表观活化能为72.55 kJ/mol。  相似文献   

3.
研究了O/W型甲基丙烯酸甲瑟(MMA)、表面活性剂和水的三元微乳液相图。盐类对微乳液增容MMA单体的影响和聚合反应动力学.结果表明.在一定范围内,加入无机盐可以增加微乳液中MMA单体的含量.不同无机盐增容MMA的效果不一样:KBr>KCl.NaCl>K2SO4.其增容效采随盐用量增加而提高.聚合反应速率与MMA单体浓度.引发剂浓度和乳化剂浓度的关系为Rp ∝[M]^0.89[I]^0.44[E]^-0.88聚合反应温度提高.聚合速率加快.  相似文献   

4.
高单体浓度范围丙烯酰胺反相微乳液聚合   总被引:10,自引:0,他引:10  
以 Span 80和 OP- 10为乳化剂 ,白油为连续介质 ,过氧化二碳酸 (2 -乙基己酯 )为引发剂 ,进行了丙烯酰胺反相微乳液聚合。研究了较高单体浓度范围内聚合速率和分子量与单体浓度、引发剂浓度、乳化剂浓度的关系 ,得到 Rp∝ [M]2 .2 4 [I]0 .81[E]0 .59,Mv∝ [M]0 .92 [I]n[E]-0 .37,其中 [I]=2 .5 7× 10 -4 mol/L~5 .14× 10 -4 mol/L时 ,n=0 .93,[I]=5 .14× 10 -4 mol/L~ 7.96× 10 -4 mol/L时 ,n=- 1.62。Rp 对 [M]的反应级数高达 2 .2 4 ,可能的原因是单体参与了引发过程和聚合区域粘度的影响。Rp 随着 [I]先增大后减小 ,可能与不同引发剂浓度范围内链增长自由基终止方式不同有关  相似文献   

5.
AM/SA反相微乳液聚合反应动力学研究   总被引:2,自引:0,他引:2  
以油酸失水山梨醇酯Span80和壬基酚聚氧乙烯醚OP-10为乳化剂,白油为连续介质,高活性过氧化二碳酸(2-乙基已基)酯(EHP)为引发剂,进行了丙烯酰胺/丙烯酸钠(AM/SA)反相微乳液共聚合反应。研究了单体总浓度[M],引发剂浓度[I],乳化剂浓度[E]对AM/SA反相微乳液聚合速率Rp和共聚物分子量M^-v的影响规律,得到Rp∞[M]^m[I]^0.65[E]^0.34,M^-v∞[M]^n[I]^-0.30[E]^-1.08,其中当[M]=3.21mol/L-6.42mol/L时,m=2.34,n=0.68,当[M]=1.28mol/L-3.33mol/L时,m=1.61,n=0.58,比较了不同单体浓度范围内AM/SA反相微乳液聚合速率。  相似文献   

6.
St-g-AM反相乳液法接枝共聚反应的动力学模型   总被引:1,自引:0,他引:1  
研究采用反相乳液方法进行淀粉与丙烯酰胺接枝共聚反应的机理,推导并修正淀粉与丙烯酰胺反相乳液法接枝共聚反应动力学模型,考察了引发剂浓度[I]、乳化剂浓度[E]、单体浓度[M]和淀粉浓度[St]等因素对表观聚合速率的影响,验证反应动力学模型。结果表明,本实验得出的动力学关系式为:Rp∝[I]0.93[M]1.28[St]1.47[E]0.61,与理论推导出的动力学方程Rp∝[I]0.5~1[M]1~1.5[St]0.5~1.47[E]0.6基本一致,说明淀粉与丙烯酰胺在反相乳液中进行接枝共聚反应符合自由基聚合机理,引发过程由引发剂受热分解生成初始自由基和初始自由基攻击淀粉分子形成淀粉骨架自由基两部分构成;在聚合过程中,单基终止和双基终止反应同时存在。  相似文献   

7.
采用阴离子开环乳液聚合法制备了聚硅氧烷共聚乳液,研究了反应条件对共聚动力学及乳胶粒径的影响。结果表明,初始恒速阶段的表观动力学方程为Rp=k[E]0.18[KOH]0.59[M]0.75,表观活化能为52.77 kJ/mol。乳胶粒径随反应温度升高而变小,粒径分布在80℃出现最小值。随[KOH]的增大,乳胶粒径变大,粒径分布变宽。复合乳化剂质量浓度[E]在不同范围内对乳胶粒径及其分布的影响不同,当[E]<0.0572 g/mL时,随[E]增大,乳胶粒径变小,粒径分布变窄;当[E]>0.0572 g/mL时,乳胶粒径反而变大。  相似文献   

8.
周晓东  郭玉  古国华  傅洵  胡正水 《材料导报》2004,18(Z2):247-249
研究了以PEO20-PPO70-PEO20和P(C9-AA)两亲聚合物分别作乳化剂时苯乙烯的乳液聚合动力学,考察了乳化剂的用量、引发剂的用量和温度对聚合反应速率的影响.结果表明,以PEO20-PPO70-PEO20作乳化剂时,[Rp∝E]0.65[I]0.91,表观活化能为36.66 kJ·mol-1;以P(C9-AA)作乳化剂时,Rp∝[E]1.80[I]0.92,表观活化能为78.70 kJ·mol-1.  相似文献   

9.
以辛基酚聚氧乙烯醚(OP-10)和OP-4、十六烷基三甲基溴化铵(CTAB)为复合乳化剂,正戊醇为助乳化剂,含氢聚二甲基硅氧烷(H-PDMS)、甲基丙烯酸甲酯(MMA)、丙烯酸正丁酯为聚合单体,以水溶性过硫酸铵(APS)-亚硫酸氢钠(NaHSO3)为氧化还原引发剂,采用微乳液聚合方法,制备了4种引发剂浓度不同的聚合物微乳液,研究了引发剂浓度对MMA/n-BA/H-PDMS的微乳液共聚合的影响。通过FT-IR和1 H-NMR分析证明,微乳液体系中的聚合物含有氢聚硅氧烷/丙烯酸酯共聚物;实验表明,当引发剂浓度太低时,聚合体系存在引发诱导效应;而当引发剂浓度适当提高时,聚合过程存在明显的恒速期;但当引发剂浓度较高时,聚合过程无明显恒速期,继续提高引发剂浓度,聚合速率明显变大,其聚合速率的最大值也更高。通过动力学研究,分别得到了聚合速率与产物特性黏度的动力学关系式:Rp∝[APS]0.75,[η]∝[APS]-0.07。另外,实验结果表明,随着聚合转化率的提高,乳胶粒径增大。在这些研究基础上初步探讨了微乳液聚合机理。  相似文献   

10.
以辛基酚聚氧乙烯醚(OP-10)和OP-4、十六烷基三甲基溴化铵(CTAB)为复合乳化剂,正戊醇为助乳化剂,含氢聚二甲基硅氧烷(H-PDMS)、甲基丙烯酸甲酯(MMA)、丙烯酸正丁酯为聚合单体,以水溶性过硫酸铵(APS)-亚硫酸氢钠(NaHSO3)为氧化还原引发剂,采用微乳液聚合方法,制备了4种引发剂浓度不同的聚合物微乳液,研究了引发剂浓度对MMA/n-BA/H-PDMS的微乳液共聚合的影响。通过FT-IR和1 H-NMR分析证明,微乳液体系中的聚合物含有氢聚硅氧烷/丙烯酸酯共聚物;实验表明,当引发剂浓度太低时,聚合体系存在引发诱导效应;而当引发剂浓度适当提高时,聚合过程存在明显的恒速期;但当引发剂浓度较高时,聚合过程无明显恒速期,继续提高引发剂浓度,聚合速率明显变大,其聚合速率的最大值也更高。通过动力学研究,分别得到了聚合速率与产物特性黏度的动力学关系式:Rp∝[APS]0.75,[η]∝[APS]-0.07。另外,实验结果表明,随着聚合转化率的提高,乳胶粒径增大。在这些研究基础上初步探讨了微乳液聚合机理。  相似文献   

11.
采用膨胀计法研究了以过硫酸铵-亚硫酸氢钠为引发剂的二甲基二烯丙基氯化铵(DMDAAC)和丙烯酰胺(AM)的水溶液共聚合动力学,测定了相应的聚合速率方程、聚合表观活化能和单体竞聚率。结果表明,聚合反应温度为45℃,当DMDAAC与AM物质的量比分别为1∶9,2∶8和3∶7时,共聚速率方程分别为Rp1=k[M]2.61[IO]0.51[IR]0.52,Rp2=k[M]2.70[IO]0.50[IR]0.53和Rp3=k[M]2.73[IO]0.50[IR]0.56,表观活化能分别为Ea1=79.10 kJ/mol,Ea2=81.39 kJ/mol和Ea3=85.15 kJ/mol,两单体的竞聚率分别为rDMDAAC=0.14,rAM=6.11。上述实验结果可从动力学角度为不同阳离子度PDA聚合速率差别及产物特征黏度值差异进行解释。  相似文献   

12.
以K<,2>S<,2>O<,8>-Na<,2>SO<,3>氧化还原体系为引发剂,研究了可溶性淀粉与N,N'-亚甲基双丙烯酰胺在反相悬浮体系中的接校共聚动力学.考察了引发剂、交联剂、淀粉、分散剂浓度和反应温度对聚合速率的影响规律.结果表明,在实验考察范围内的动力学关系式为R<,p>oc[I]<'0.89>[M]<'1.4...  相似文献   

13.
用分散聚合法制备了表面光滑、粒径均匀的聚苯乙烯-丙烯酸丁酯微球,研究了各种参数变化对聚合转化率-时间曲线的影响并得到苯乙烯和丙烯酸丁酯的分散聚合动力学方程。结果表明,在所考察的范围内,初始单体中丙烯酸丁酯的物质的量分数超过20%以上时,总转化率明显降低;在60℃~75℃之间随温度上升,总转化率增大,但80℃时反而减小,并随着醇水比的降低、引发剂用量的增大而增大,稳定剂的浓度对其影响甚小;在所考察的范围内,苯乙烯和丙烯酸丁酯的分散聚合动力学方程为Rp=k.exp(38194/RT)[St/BA]0.7029[m(EtOH)/m(EtOH+H2O)]-4.138[AIBN]0.3845,其表观活化能Ea为38.194 kJ/mol。  相似文献   

14.
紫外光照射下光敏引发丙烯酰胺聚合动力学   总被引:3,自引:0,他引:3  
以2,2’-偶氮(2-脒基丙烷)二氢氯化物(V-50)为光敏引发剂,丙烯酰胺为原料,采用毛细管膨胀计法,研究了丙烯酰胺水溶液聚合动力学规律;在紫外光照射下探讨了单体浓度、光敏引发剂浓度、反应温度对光敏引发丙烯酰胺(AM)聚合反应速率的影响。结果表明,聚合反应的表观活化能为21.21 kJ/mol,反应表观速率常数表达式为k=2.688×103exp(-21.21/RT),光敏引发AM聚合速率的动力学方程式表示为Rp=k[AM]1.088[I]0.4989,通过实验验证了该动力学关系式。  相似文献   

15.
采用微乳聚合法制备一系列不同阳离子度的微球与HPAM复合形成一种新型调剖剂,通过透射扫描电镜及激光粒度分析测定出合成微球的初始粒径在50—100nm,水中膨胀后的粒径为l-3μm;使用微电泳仪分析了微球的表面电势,在阳离子度30%时达到最大;由于静电作用,阳离子微球和HPAM浓度在0.02%即发生絮凝反应;通过不同剪切下的粘度测定,发现静电作用可以大幅度提高体系的粘度;增~HPAM的水解度可以将体系粘度再提高约20%。岩心驱替实验表明,复合体系具有较好的调剖性能。  相似文献   

16.
以单电子转移活性自由基聚合(SET-LRP)法,在水溶液中合成含纳米二氧化硅的新型星形水溶性共聚物,研究了单体、引发剂、催化剂、配体和改性纳米SiO2功能单体(NSFM)用量、单体摩尔比等条件对聚合反应的影响。采用红外光谱和核磁共振氢谱对制备的丙烯酰胺共聚物进行表征。结果表明,NSFM成功地参与了单电子转移活性自由基聚合反应中。通过正交试验确定了聚合反应的最佳物料摩尔比,即n(AM)∶n(AANa)∶n(Gly-Br3)∶n(CuBr)∶n(Me6TREN)=1687.5∶562.5∶1.0∶2.3∶1.5,[AM]+[AANa]+[NSFM]总浓度为4.5mol/L;单因素实验确定了NSFM的最佳用量为单体总质量的0.5%。用流变仪对共聚物的性能进行了研究。结果表明,当剪切速率超过临界值(100s-1)时,星形共聚物表现出剪切增稠的流变性能;P(AM-co-AANa-co-VTS-SiO2)表现出较好的耐温和抗盐性。  相似文献   

17.
以丙烯酰胺(AM)和甲基丙烯酰氧乙基三甲基氯化铵(DMC)为原料,在金属卤化物灯照射和引发剂作用下,通过水溶液聚合法合成阳离子型聚丙烯酰胺P(AM-DMC)。考察了单体质量分数、引发温度、引发剂质量分数、溶液pH值和单体配比等对聚合物特性黏数和溶解性的影响。在单体质量分数30%,阳离子度10%~30%,引发剂质量分数0.0048%,pH值4,引发温度15℃条件下,产物的特性黏数可达10dL/g以上,溶解时间低于40min。用红外光谱对聚合物的结构进行了确认。  相似文献   

18.
负载钛催化丁二烯本体沉淀聚合的动力学研究   总被引:1,自引:0,他引:1  
研究了负载钛催化剂引发丁二烯在0~40℃的本位沉淀聚合动力学。结果表明,体系在单体液相未消失之前转化率与时间成直线关系,即聚合速率恒定、表现为稳态聚合,丁二烯本位沉淀聚合的表现活化能为33.5kJ/mol,一定条件下的聚合速率方程为:Rp=kp[Bd]o[Ti]o[Al]o。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号