首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
为了利用磁流变加工实现对大口径平面光学元件波前中频误差的控制,研究了磁流变抛光去除函数的频谱误差校正能力和磁流变加工残余误差抑制方法。首先,比较了模拟加工前后元件中频功率谱密度(PSD1)误差和元件PSD曲线的变化,分析了磁流变去除函数的可修正频谱误差范围。然后,利用均匀去除方法分析了加工深度、加工轨迹间距和去除函数尺寸等磁流变加工参数对中频PSD2误差的影响,提出了抑制中频PSD2误差的方法。最后,对一块400mm×400mm口径平面元件的频谱误差进行了磁流变加工控制实验。实验显示:3次迭代加工后,该元件的波前PV由加工前的0.6λ收敛至0.1λ,中频PSD1误差由5.57nm收敛至1.36nm,PSD2由0.95nm变化至0.88nm。结果表明:通过优化磁流变加工参数并合理选择加工策略,可实现磁流变加工对大口径平面光学元件中频误差的收敛控制。  相似文献   

2.
为了高精度地检测长焦透镜的透射波前,提出了在Zygo干涉仪的平面光路中加入一个二元衍射元件提供参考波前的计算全息法(CGH)。介绍了计算全息法检测长焦透镜透射波前的理论,设计并研制了高精度计算全息板,并将其用于大口径长焦距透镜透射波前检测。理论分析和实际检测结果表明:该方法系统误差小,测量重复性精度优于0.004λ(2σRMS),与常规的菲索干涉法测量球面透镜透射波前得到的结果一致,从而验证了提出测量方法的可靠性。最后,详细分析了二元衍射元件的制造误差对透射波前检测的影响,得到测量误差(PV)小于λ/10。文中的结果表明提出的计算全息法可有效缩短光路,提高测量精度,对长焦透镜波前检测有重要的应用价值。  相似文献   

3.
Shack-Hartmann波前传感器检测大口径圆对称非球面反射镜   总被引:1,自引:0,他引:1  
针对大口径非球面反射镜在研磨阶段后期其面形与理想面形存在较大偏差,且表面粗糙度较大、反射率较低,采用轮廓仪和普通干涉仪检测无法满足测试要求等问题,提出采用动态范围大且精度高的Shack-Hartmann波前传感器来检测大口径非球面反射镜.研究分析了Shack-Hartmann波前传感器检测系统的原理及系统误差并编写了相应的数据处理软件.为了验证该方法的可行性,对已经加工完成的350 mm口径旋转对称双曲面面形进行了检测,测量得到的面形误差PV值、RMS值分别为0.388λ、0.043λ(λ=632.8 nm);与干涉测量的标准结果进行了对比,得到的面形偏差PV值、RMS值分别为0.014λ和0.001λ.对比结果表明,Shack-Hartmann波前传感器的测量结果正确可靠,从而验证了Shack-Hartmann波前传感器检测大口径非球面反射镜的可行性.  相似文献   

4.
五角棱镜的角度制造误差对波前测量的影响   总被引:1,自引:1,他引:1  
从光学平行差入手,导出了有角度制造误差的五角棱镜的像方坐标系和作用矩阵,分析了角度制造误差引起的扫描激光束转向的波前误差,提出了调整五角棱镜的依据,有利于减小角度制造误差对大口径透镜望远镜波前测量的影响。  相似文献   

5.
设计了一种基于干涉检验法的复制拼接光栅测量光路。针对光栅复制拼接光路中入射光角度难以精确测量的问题,分析了光栅拼接实验中入射光角度对光栅拼接的影响。建立了光栅拼接误差模型,分析了五维拼接误差的容限要求。按照光栅复制拼接光路的要求,设计了一种干涉仪角度调节装置。根据误差模型和拼接光路分析了500mm×500mm大尺寸中阶梯光栅复制拼接光路中入射光角度误差与拼接误差的关系。结果显示:入射光角度误差为1°,拼接光路中绕x轴,y轴的转动误差Δθx,Δθy和沿z轴的位移误差Δz的计算值与实际值之间分别相差0.002 1μrad,0.003 3μrad和0.348 2nm时,引起波前差为2.590 1nm。根据这一计算结果,给出了干涉仪角度调节装置的设计指标,即设置角度调节分度为0.1°时,可满足大尺寸光栅复制拼接要求。  相似文献   

6.
误差分离技术在平面镜瑞奇-康芒法检测中的应用   总被引:3,自引:0,他引:3  
为了提高瑞奇-康芒法检测平面镜面形误差的精度,提出了利用检测系统光瞳面与被检平面镜表面的坐标映射关系插值拟合平面镜面形的方法。结合最小二乘法分析,解算了由光路调整引入的离焦误差,获得了更为真实的平面镜面形误差。理论仿真分析显示,此方法的平面镜测量误差可控制在λ/100(λ=632.8nm)量级。对口径为40mm的小口径平面镜进行了实际检测,检测过程中通过多角度旋转被测平面镜,利用坐标映射关系和幅值转换关系对测试波前进行恢复,在分离系统离焦误差后得到被检平面镜面形RMS值为0.018 6λ,与干涉仪直接检测得到的RMS值0.021λ相比,残差为0.002 4λ。实验结果证明了此种误差分离技术在瑞奇-康芒法对平面镜面形检测时的有效性与准确性。  相似文献   

7.
为了更好地对于大口径望远镜中频误差进行评价与分配,本文引入了结构函数来进行研究。本文首先对于结构函数的基本性质进行了推导,并与传统的误差均方根(RMS)进行比较,表明了其表征不同尺度误差的能力。之后分析了系统波前在不同的评价尺度下的统计特性差异,得出在较小尺度下,系统的误差分布可以较好的服从正态分布,而随着尺度的增加(如大于100mm)会逐渐偏离正态分布的结论。然后根据结构函数的基本性质,提出了一种可以同时考虑诸多误差源的大口径望远镜中频误差分配方法。结合美国三十米望远镜(TMT)团队所提出的标准化点源敏感性(normalized Point Source Sensitivity,PSSn),建立起了由结构函数到标准化点源敏感性的换算关系,通过此方法来进行误差分配指标间的交叉验证以及与其他单元技术之间的对接。最后,根据本文所提出的方法,对于某大口径望远镜的主镜系统进行了误差分配,得到在大尺度均方根为25nm,粗糙度为1nm,中频尺度为250mm,大气相干长度为0.4m(检测环境)的要求下,该系统的结构函数满足要求,同时由要求结构函数所计算得到的PSSn=0.999 6大于由镜面数据直接得到的PSSn=0.999 5,同样满足要求。  相似文献   

8.
在影响矩阵法瑞奇-康芒检验中,恢复被测面形的关键在于构建被检平面面形误差与系统波像差之间的Zernike系数影响矩阵。为了提高瑞奇-康芒法的检测精度,研究了采用单位激励法来精确计算影响矩阵的方法。分别重构平面镜仅包含某一种Zernike波像差下的系统波像差分布,经Zernike拟合得到该种Zernike像差的影响系数向量;由各Zernike像差的影响系数向量组成影响矩阵,然后用最小二乘拟合出被检平面面形。对口径为90mm的平面镜进行实际检验,在瑞奇角为26.5°与40.6°的情况下进行波前恢复,得到被检平面镜PV值为0.141 3λ,RMS为0.019 4λ。与直接采用平面参考镜检测相比,瑞奇-康芒法检测误差PV值为0.082 8λ,RMS为0.010 9λ。该方法能够精确生成影响矩阵,抑制了影响矩阵法中对大F数的依赖,可用于精确恢复平面镜面形。  相似文献   

9.
应用哈特曼-夏克(H-S)波前检测仪检测大数值孔径(NA)透镜时,需要采用纳米级针孔产生参考球面波前对H-S传感器进行标定.为了制作出满足要求的高质量针孔,本文对影响参考波前质量的各种要素进行了仿真计算和分析,以获得最优针孔加工参数.基于矢量衍射理论,在会聚高斯光束照射下,计算了针孔厚度和直径大小对衍射波前误差的影响,衍射波前中的像差成份、能量透过率、强度均匀性、针孔加工误差及光束相对针孔中心发生平移、离焦、倾斜时衍射波前误差的变化.分析计算显示,在NA为0.6时,为了使相对于理想球面波的波峰波谷值(P-V)偏差不大于0.005λ(λ=193 nm),在实际针孔的加工制作中,应选取材料铬,并取厚度200 nm,直径180 nm为适宜.  相似文献   

10.
根据0.2级的全光纤电流互感器系统测量精度要求,在方波和正弦波两种常用的调制解调模式下,文中分析了光纤λ/4波片制作或应用中容许的误差范围。发现最大熔接角允许误差与最大相位延迟允许误差近似成二次曲线的关系。在方波和正弦波调制模式下,当相位延迟误差或熔接角度误差为零时,光纤λ/4波片的最大熔接角允许误差和最大相位延迟允许误差分别为1.816°和1.806°;3.637°和3.618°;在方波调制模式下,光纤λ/4波片的最大熔接角允许误差和最大相位延迟允许误差分别随传感电流i的增大而增大,其变化率较小,分别为1.32×10-6(o/A)、2.54×10-6 o/A;而在正弦波调制模式下,光纤λ/4波片的最大熔接角允许误差和最大相位延迟允许误差分别随传感电流的增大而减小,其变化率较小,分别-4×10-6(o/A)、-7.6×10-6(o/A).  相似文献   

11.
由于现有评价与测试方法不能满足3~4m地基光电探测系统在不同仰角下对光学系统波前检测的需求,本文提出了基于子孔径斜率离散采样,再重构全口径波面轮廓的波像差测试方法。采用光学模拟与数学分析协同仿真的方法,研究了波面重构算法的不确定度以及扫描运动引起的子孔径倾斜误差、子孔径扫描位置误差、像点坐标测量误差与波前复原精度间的作用规律。仿真结果显示,迭代算法的相对误差ΔPV为0.002 8λ(λ=632.8nm),模式算法的相对误差ΔPV为0.002 7λ。当子孔径倾斜误差小于0.2″,波面重构误差ΔPV约为0.02λ。当子孔径采样位置精度优于0.2mm,其引入的波面重构误差小于0.04nm(PV);当子孔径像点坐标提取精度优于5μm,波面重构误差ΔPV约为0.03λ。研究结果表明,当考虑波面重构过程中的实际测量误差时,模式算法的误差容限较高,收敛性更好。此外,构建实际测试装置时,需引入角度监测与算法误差补偿机制,子孔径倾斜角度监测系统的测角精度需优于0.2″。  相似文献   

12.
位置敏感探测器(Position Sensitive Detector,PSD)是一种高精度的二维位移测量传感器,利用三片二维PSD的组合实现空间六自由度相对运动的位移和角度测量。测量系统主要包括三片PSD传感器(包括PSD光敏面和发光管)、低噪声的信号调理和AD采集电路,采用三片PSD正交布局方案,通过PSD光敏面的光点位置计算相对运动的位移和角度。设计了六自由度的PSD标定测试系统,用于PSD测量系统中心偏移和发光管安装误差的标定测试。测试结果表明,PSD测量系统的测量范围优于位移±10mm、角度±2.5°,标定后PSD测量系统的噪声误差为位移0.1mm、角度0.02°,测量系统的绝对位移误差小于0.5mm、角度误差小于0.14°,满足系统0.5mm和0.5°的指标要求。此外,对PSD传感器的环境适应性进行了评估。PSD测量系统具有量程宽、精度高、线性度好的优点,成功应用于天舟1号货运飞船微重力主动隔振装置的相对运动测量中。  相似文献   

13.
非接触式扫描反射镜转角测量系统   总被引:1,自引:0,他引:1  
为了提高扫描反射镜转角检测系统的测角范围,建立了基于一字线激光器和线阵CCD的高精度非接触式扫描镜角度检测系统。介绍了检测系统的结构和工作原理,该系统根据激光光斑在CCD上的位置计算扫描反射镜的转角,并利用特殊设计的阵列反射镜增大测角范围。为了降低对加工及装调精度的要求,对系统进行了误差分析,给出了采用多项式拟合法进行角度测量的理论依据。讨论了影响系统检测精度的一系列误差源,计算了系统测量的总误差。最后进行了相关的测量实验。实验结果表明:系统的检测系统分辨率为2.5",测角范围为11°,测角精度可达3",可以满足扫描反射镜对角度测量系统提出的高精度、非接触、大测角范围的要求。  相似文献   

14.
五棱镜的运动误差对波前测量的影响   总被引:8,自引:3,他引:8  
五棱镜使光束转向时,它的工作状态的改变会给测量带来一定的误差,分析了五棱镜由于机械运动引起的在三维方向有微偏角时使光束转向改变波前的复杂情况,计算机模拟实验证明了由机械运动引起的波前改变量是可分离的,以便减小五棱镜的运动误差对测量的影响,使五棱镜光束转向系统在测量中发挥最佳效能。  相似文献   

15.
大型望远镜测角系统误差的修正   总被引:1,自引:0,他引:1  
王显军 《光学精密工程》2015,23(9):2446-2451
由于大型望远镜转台轴系对测角精度要求较高,本文研究了测角数据系统的误差修正技术。分析了测角数据误差产生的原因,对测角元件误差、安装误差、被测轴系误差进行了讨论,指出轴系测角分系统的误差规律符合谐波方程,故提出采用谐波方程式来表达误差规律。针对工程应用,建立了基于傅里叶级数的简化谐波方程误差公式,用谐波方程算法和多项式拟合算法对系统误差进行修正。在一个望远镜垂直轴转台进行了试验验证,结果显示测角精度峰值由原来的3.81″提高到了1.06″。实验表明,基于傅里叶级数的修正算法,较好地符合误差分布规律;采用系统误差修正技术,可以对系统综合误差统一修正,能够有效提高系统测角精度。  相似文献   

16.
设计了基于振幅型棋盘光栅的二维剪切干涉仪,用于测量大数值孔径(NA)物镜的波像差。研究了棋盘光栅剪切干涉仪的基本原理,分析了大数值孔径物镜波像差测量时涉及的几个特殊问题。首先,根据棋盘光栅的远场衍射函数分析了棋盘光栅的衍射效率和衍射级分布,给出了剪切干涉图数据的处理方法。接着,根据球面光瞳坐标与平面探测器坐标的投影关系,分析了光瞳坐标畸变的影响;采用几何光线追迹方法,分析了光栅方程非线性对系统误差的影响。最后,推导了物镜光瞳边缘的相对照度与数值孔径的关系。试验结果表明:采用相同光瞳坐标,NA为0.6的显微物镜的波像差测量重复性(3σ)可达到3.7 mλ。对大数值孔径物镜测量过程中涉及的特殊问题进行了探讨,结果提示:测量大数值孔径物镜的波像差时,需要考虑光瞳坐标畸变、光栅方程引入的系统误差、光瞳边缘照度衰减的影响等。  相似文献   

17.
用夏克-哈特曼探测器测量人眼波前像差   总被引:4,自引:3,他引:1  
为了精确测量人眼的高低阶像差,设计并搭建了一套人眼波前像差精确测量光学系统。该系统采用夏克-哈特曼波前探测器进行波前探测,可以在不同瞳孔、不同视场和不同调焦状态下精确测量人眼的波前像差。用ZEMAX软件对系统进行模拟分析,验证了该系统的探测精度,讨论了系统的调焦性能。用该系统实验分析了人眼各阶像差的分布情况、瞳孔大小和调焦状态对人眼波前像差的影响,以及人眼波前像差的时间和空间变化特性(变化频率约3 Hz,等晕角约为1.5°)。结果表明,该系统精度高(PV1/20λ),操作方便,是人眼波像差的研究和个性化角膜手术的有力工具。  相似文献   

18.
激光外差干涉的非线性误差补偿   总被引:1,自引:1,他引:0  
为了补偿用激光外差干涉法进行纳米测量产生的非线性误差,进行了非线性误差补偿的实验研究。根据镀膜实体角锥棱镜反射光的偏振特性,推导出当激光器出射光束存在偏振椭圆化时,测量角锥棱镜以运动方向为轴线的轴向旋转对非线性误差一次谐波的影响模型。分析表明,测量角锥棱镜以其运动方向为轴线的轴向旋转会减小非线性误差一次谐波。实验显示,当测量角锥棱镜轴向旋转角从0°增加到100°时,非线性误差从3.48 nm减小到1.39 nm,实现了非线性误差一次谐波减小为原来的40%。该方法避免了现有的非线性误差补偿方法光路系统和电路系统复杂的缺点,系统实现很简单。  相似文献   

19.
基于激光位移传感器的面角度测量技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对面角度现场测试需求,利用激光位移传感器的漫反射测量特性,搭建了面角度非接触测量装置,提出了一种结合三坐标测量机和位置敏感探测器对激光位移传感器进行空间坐标化标定的方法,从而构建出精确的面角度测量模型;采用蒙特卡洛法对面角度非接触测量装置的不确定度进行评定,在±25°测量范围内其结果为U=0.044°~0.046°(k=2);通过性能验证试验、重复性试验和稳定性试验对装置的性能指标进行考核,在±25°测量范围内其绝对测量示值误差不超过0.036°,重复性不超过0.004°,稳定性不超过0.021°;实验结果表明该基于激光位移传感器的面角度非接触测量装置准确可靠,具备开展面角度现场测试应用的前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号