首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Hydroxyapatite/alumina/diopside ceramic composites were fabricated by hot-pressing. The hardness, fracture toughness and bending strength of the new fabricated composites were measured. The compositions of hydroxyapatite matrix ceramic composites were discussed by XRD and FT-IR analysis. Microstructures of the composites were studied on fracture surfaces. The bending strength and fracture toughness of 58 vol.% hydroxyapatite, 40 vol.% alumina and 2 vol.% diopside sample, were 200 MPa and 2.80 MPa m1/2, respectively.  相似文献   

2.
TiC-based composites toughened by submicron SiC particles with improved fracture toughness were fabricated and fracture mechanism has been investigated. It has been found that the improvement in fracture toughness of TiC–SiC composites is due to both crack paths propagating through uniformly distributed SiC particles and the fracture mode transition from intergranular type to transgranular type caused by the change of residual stresses originating from the addition of SiC particles. The optimum of fracture toughness (5.2 MPa m1/2) was achieved at 14.6 vol% SiC, whereas the toughness decreased with increasing amount of SiC beyond 30 vol%.  相似文献   

3.
Boron carbide (B4C)/TiC/Mo ceramic composites with different content of TiC were produced by hot pressing. The effect of TiC content on the microstructure and mechanical properties of the composites has been studied. Results showed that chemical reaction took place for this system during hot pressing sintering, and resulted in a B4C/TiB2/Mo composite with high density and improved mechanical properties compared to monolithic B4C ceramic. Densification rates of the B4C/TiC/Mo composites were found to be affected by additions of TiC. Increasing TiC content led to increase in the densification rates of the composites. The sintering temperature was lowered from 2150 °C for monolithic B4C to 1950 °C for the B4C/TiC/Mo composites. The fracture toughness, flexural strength, and hardness of the composites increased with increasing TiC content up to 10 wt.%. The maximum values of fracture toughness, flexural strength, and hardness are 4.3 MPa m1/2, 695 MPa, and 25.0 GPa, respectively.  相似文献   

4.
Dense Ti3Si(Al)C2-based ceramics were synthesized using reactive melt infiltration (RMI) of Al70Si30 alloy into the porous TiC preforms. The effects of the infiltration temperature on the microstructure and mechanical properties of the synthesized composites were investigated. All the composites infiltrated at different temperatures were composed of Ti3Si(Al)C2, TiC, SiC, Ti(Al, Si)3 and Al. With the increase of infiltration temperature from 1050 °C to 1500 °C, the Ti3Si(Al)C2 content increased to 52 vol.% and the TiC content decreased to 15 vol.%, and the Vickers hardness, flexural strength and fracture toughness of Ti3Si(Al)C2-based composite reached to 9.95 GPa, 328 MPa and 4.8 MPa m1/2, respectively.  相似文献   

5.
Tantalum diboride – boron suboxide ceramic composites were densified by spark plasma sintering at 1900 °C. Strength and fracture toughness of these bulk composites at room temperature were 490 MPa and 4 MPa m1/2, respectively. Flexural strength of B6O–TaB2 ceramics increased up to 800 °C and remained unchanged up to 1600 °C. At 1800 °C a rapid decrease in strength down to 300 MPa was observed and was accompanied by change in fracture mechanisms suggestive of decomposition of boron suboxide grains. Fracture toughness of B6O–TaB2 composites showed a minimum at 800 °C, suggestive a relaxation of thermal stresses generated from the mismatch in coefficients of thermal expansion.Flexural strength at elevated temperatures for bulk TaB2 reference sample was also investigated.Results suggest that formation of composite provides additional strengthening/toughening as in all cases flexural strength and fracture toughness of the B6O–TaB2 ceramic composite was higher than that reported for B6O monoliths.  相似文献   

6.
This paper is focused on Laser shock peening (LSP) of silicon carbide (SiC) advanced ceramic. A comprehensive study was undertaken using a pulsed Nd:YAG laser. Surface modifications were investigated, particularly: the roughness, hardness, fracture toughness, microstructure, phase transformation and residual stress induced before and after the LSP surface treatment. The findings showed increase in the surface roughness, changes to the surface morphology, improved hardness, and a reduction in the fracture lengths. The LSP surface treatment also improved the surface fracture toughness from an average of 2.32 MPa m1/2 to an average of 3.29 MPa m1/2. This was attributed to the surface integrity and the induced compressive residual stress as a maximum of −92 MPa was measured compared to an average of +101 MPa on the as-received SiC. A slight change in the surface chemistry was also observed from the XPS spectra, however, no real phase transformation was seen from the X-ray diffraction analysis. Laser energy density of around 1.057 J/cm2, 8.5 mm spot size, 10 Hz pulse repetition rate (PRR) at 6ns pulse duration, and 1064 nm wavelength resulted to obtaining a crack-free surface treatment and demonstrated that the technique is also beneficial to enhance some of the properties to strengthen brittle ceramics such as SiC.  相似文献   

7.
Laminated SiC/ZrB2 ceramic was fabricated by roll-compaction and spark plasma sintering at 1600 °C. A maximum fracture toughness of 12.3 ± 0.3 MPa m1/2 was measured for the sintered SiC/ZrB2 laminated ceramic. This significant improvement in fracture toughness can be attributed to the crack deflection along the interfacial layer and the presence of residual stresses in the sample. The effect of interlayer composition on the residual stresses was discussed in detail. It is observed that the residual thermal stress could be reduced by addition of ZrB2 particles to the SiC interlayer. The bending strength can be increased to 388 ± 44 MPa with the addition of 20 vol% ZrB2 to the SiC interlayer.  相似文献   

8.
The effect of TiB2 content on mechanical properties of silicon carbide–titanium diboride ceramic composites was studied. The hardness of the ceramics decreased from 27.8 GPa for nominally pure SiC to 24.4 GPa for nominally pure TiB2. In contrast, fracture toughness of the ceramics increased from 2.1 MPa m1/2 for SiC to ~6 MPa m1/2 for SiC with TiB2 contents of 40 vol.% or higher. Flexure strengths were measured for three composites containing 15, 20, and 40 vol.% TiB2 and analyzed using a two parameter Weibull analysis. The Weibull modulus increased from 12 for 15 vol.% TiB2 to 17 for 20 and 40 vol.% TiB2. Microstructural analysis revealed microcracking in the ceramics containing 20 and 40 vol.% TiB2. The ceramic containing 40 vol.% TiB2 had the best combination of properties with a fracture toughness of 6.2 MPa m1/2, hardness of 25.3 GPa, Weibull modulus of 17, and a strength of 423 MPa.  相似文献   

9.
《Ceramics International》2017,43(14):10817-10823
The addition effect of different ceramic particles such as TiB2, TiN and nano-Si3N4 on the microstructure and mechanical properties of TiCN-WC-Co-Cr3C2 based cermets, which are prepared by spark plasma sintering, was studied. Microstructural characterization of the cermets was done by scanning electron microscope. X-ray diffraction was performed to study the crystal structures. Mechanical properties such as hardness and fracture toughness were measured for the different developed cermets. The hardness and fracture toughness of the TiCN-WC-Co-Cr3C2 cermets without TiN, TiB2, and nano-Si3N4 were 8.4 GPa and 3.4 MPa m1/2, respectively. It was found that 5 wt% TiB2 addition alone improved the corresponding hardness and fracture toughness to 19.2 GPa and 6.9 MPa m1/2, respectively. The addition of 5 wt% TiN, improved the hardness and fracture toughness to 16.7 GPa and 6.9 MPa m1/2, respectively. With the combination of 5 wt% TiN and 5 wt% TiB2, the hardness and fracture toughness were improved to 15.5 GPa and 6.6 MPa m1/2, respectively. But, the addition of 5 wt% Si3N4 showed a balanced improvement in both hardness (17.6 GPa) and toughness (6.9 MPa m1/2). Fracture toughness did not change much for all the above cermets with different ceramic inclusions.  相似文献   

10.
HfB2-based composites containing 3 vol% silicides of molybdenum or tantalum as sintering additives are densified by spark plasma sintering at 1900–2000 °C. Mechanical properties are measured up to 1500 °C in air. 4-pt Flexural strength values at 1500 °C are 480 MPa (64% of the RT value) for the MoSi2-doped composite and 290 MPa (49% of the RT value) for the TaSi2-doped composite. The fracture toughness is insensitive to the temperature change and reaches 5 MPa m1/2 for the TaSi2-doped ceramic.  相似文献   

11.
Reaction bonding of aluminum oxide (RBAO) is a novel technique for preparing porous alumina. By adapting this manufacturing route, macroporous Al2O3 supports with high fracture toughness are prepared for ceramic membrane. The effects of sintering temperatures and aluminum (Al) content on mechanical properties of macroporous Al2O3 supports are investigated, especially for the improvement of fracture toughness. When the sintering temperatures increase from 1200 °C to 1600 °C, increments of fracture toughness and bending strength are observed. Sintered at 1600 °C, when Al content is 16 wt%, the maximum value of fracture toughness and bending strength of macroporous Al2O3 supports are 2.0 MPa m1/2 and 137 MPa, respectively, which are 2.0 and 2.6 times than that of the supports without adding any additives. By SEM analysis, many fine Al2O3 particles form a network which is beneficial to the improvements of fracture toughness and bending strength. After corroded in nitric acid and sodium hydroxide solutions of 1 mol L?1 at 80 °C for 168 h, respectively, the mass loss percentage is lower than 1 wt%. And the bending strength keeps at the level of ~40 MPa which is strong enough to apply in industry. Simultaneously, the toughening mechanism of RBAO macroporous support is also discussed.  相似文献   

12.
Silicon carbide/graphene platelet (SiC/GPLs) composites were prepared using different weight percent of GPLs filler by hot pressing (HP) technology at 2100 °C in argon. The influence of the GPLs addition on bending strength, fracture toughness and related fracture characteristics was investigated. Both the bending strength and fracture toughness increased with increasing GPLs additives. The main fracture origins – strength degrading defects were pores at the low content of platelets and combination of pores and GPLs or clusters of GPLs particles in systems with a higher content of platelets. The fracture toughness increased due to the activated toughening mechanisms mainly in the form of crack bridging and crack branching, while the crack deflection was limited. The highest fracture toughness of 4.4 MPa m1/2 was achieved at 6 wt.% of GPLs addition, which was ∼30% higher than the KIC value of the reference material.  相似文献   

13.
Silicon nitride + 1 wt% graphene platelet composites were prepared using various graphene platelets (GPL) and two processing routes; hot isostatic pressing (HIP) and gas pressure sintering (GPS). The influence of the processing route and graphene platelets’ addition on the fracture toughness has been investigated. The matrix of the composites prepared by GPS consists of Si3N4 grains with smaller diameter in comparison to the composites prepared by HIP. The indentation fracture toughness of the composites was in the range 6.1–9.9 MPa m0.5, which is significantly higher compared to the monolithic silicon nitride 6.5 and 6.3 MPa m0.5. The highest value of KIC was 9.9 MPa m0.5 in the case of composite reinforced by the smallest multilayer graphene nanosheets, prepared by HIP. The composites prepared by GPS exhibit lower fracture toughness, from 6.1 to 8.5 MPa m0.5. The toughening mechanisms were similar in all composites in the form of crack deflection, crack branching and crack bridging.  相似文献   

14.
Ti3SiC2/3Y-TZP (3 mol% Yttria-stabilized tetragonal zirconia polycrystal) composites were fabricated by spark plasma sintering (SPS). The effect of Ti3SiC2 content on room-temperature mechanical properties and microstructures of the composites were investigated. The Vickers hardness and bending strength of the composites decreased with the increasing of Ti3SiC2 content whereas the fracture toughness increased. The maximum fracture toughness of 9.88 MPa m1/2 was achieved for the composite with 50 vol.% Ti3SiC2. The improvement of the fracture toughness is owing to the crack deflection, crack bridging, the transformation toughening effects.  相似文献   

15.
《Ceramics International》2016,42(4):5291-5298
The effect of WC content on microstructure and mechanical properties of the TiC–Ni3Al system cermets was investigated. Ni3Al-bonded cermets showed a core–rim structure with carbide particle coupled with rim embedded in Ni3Al binder. With WC content increasing, TiC grains were refined and the white rim became complete and got thicker gradually. Interface between core and rim showed a completely coherent relationship. The rim enriched in W constituted an ideal coherence between hard phase and Ni3Al binder phase. With WC content increasing, the densification of cermets was enhanced, and hardness and TRS were increased firstly and then reduced, reaching peak values 90.9 HRA (HV30 15 GPa) and 1629 MPa, respectively in cermet N5 (25 wt% WC). Similarly, fracture toughness got a peak value (11.6 MPa m1/2), at the composition with 20 wt% WC.  相似文献   

16.
In order to improve the fracture toughness of ZrB2 ceramics, as-received and heat treated short carbon fiber reinforced ZrB2-based composites were fabricated by hot pressing. The toughening effects of the fibers were studied by investigating the relative density, phase composition, microstructure and mechanical properties of the composites. It was found that the densification behavior, microstructure and mechanical properties of the composites were influenced by the fibers’ surface condition. The heat treated fiber was more appropriate to toughen the ZrB2-based composites, due to the high graphitization degree, low surface activity and weak interfacial bonding. As a result, the fracture toughness of the composites with heat-treated fiber is 7.62 ± 0.12 MPa m1/2, which increased by 10% as compared to the composites with as-received fiber (6.89 ± 0.16 MPa m1/2).  相似文献   

17.
Fully densified ZrB2-based ceramic composites were produced by reactive pulsed electric current sintering (PECS) of ZrB2–ZrH2 powders within a total thermal cycle time of only 35 min. The composition of the final composite was directly influenced by the initial ZrH2 content in the starting powder batch. With increasing ZrH2 content, ZrB2–ZrO2, ZrB2–ZrB–ZrO2 and ZrB2–ZrB–Zr3O composites were obtained. The ZrB2–ZrB–ZrO2 composite derived from a 9.8 wt% ZrH2 starting powder exhibited an excellent flexural strength of 1382 MPa combined with a Vickers hardness of 17.1 GPa and a fracture toughness of 5.0 MPa m1/2. The high strength was attributed to a fine grain size and the removal of B2O3 through reaction with Zr. Higher ZrH2 content starting powders were densified through solution-reprecipitation resulting in the formation of coarser angular ZrB2–ZrB composites with a Zr3O grain boundary phase with a fracture toughness of 5.0 MPa m1/2 and an acceptable strength in the 852–939 MPa range.  相似文献   

18.
Laminated SiCw/SiC ceramic composites were prepared by chemical vapor infiltration (CVI) and tape casting, and the advantages of this method were investigated. The results showed that this method can increase strength of the composites by reducing the damage of SiC whiskers and increasing their volume fraction, and increase toughness of the composites by controlling the interfacial bonding between whiskers and matrix and inter-laminar bonding between layers. The volume fraction of whiskers reached 40 vol.%, and the flexural strength, tensile strength and fracture toughness were 315 MPa, 158 MPa and 8.02 MPa m1/2, respectively. Interfacial and interlaminar crack deflection and bridging were observed.  相似文献   

19.
Laminated HfC–SiC/BN ceramics were successfully fabricated by tape casting and hot pressing. Fully dense HfC–SiC ultra-high temperature ceramics with homogeneous structure were obtained. The introduction of the weak BN layer resulted in a slight decrease of the flexural strength but significantly improved the fracture toughness compared with monolithic HfC–SiC ceramics. The fracture toughness of laminated HfC–SiC/BN ceramics in the parallel direction peaked at 8.06 ± 0.46 MPa m1/2, which increased by 115% than that of monolithic HfC–SiC ceramics. The composites showed non-catastrophic fracture behaviors in both parallel and perpendicular directions. It indicates that laminated structure design is a promising approach to obtain full density HfC–SiC ceramics with high fracture toughness.  相似文献   

20.
《Ceramics International》2015,41(6):7611-7617
CrB2+MoSi2 ceramic composites with different contents of MoSi2 (5 wt% and 15 wt%) were prepared by pressureless sintering and hot-pressing techniques. For comparison, a monolithic CrB2 ceramic was also consolidated under the identical temperature, pressure and holding time by both pressureless sintering and hot-pressing techniques. The effects of the fabrication processes on the densification and mechanical properties of the composites were investigated. No improvement in density was observed upon addition of MoSi2 as sinter additive. The phase analysis and microstructural characterization of the resultant composites indicate that there are no sintering reactions between the matrix (CrB2) and the additive (MoSi2). The hardness and fracture toughness of the composites were measured in the range of 17–19 GPa and 3–5 MPa m1/2 respectively. The hardness was found to decrease (7% to 8%) and fracture toughness was found to increase (60%–90%) with respect to the addition of MoSi2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号