首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《中成药》2020,(10)
目的制备厚朴酚聚乳酸-羟基乙酸共聚物(PLGA)纳米粒,并考察其体内药动学。方法乳化-溶剂挥发法制备纳米粒后,以3%甘露醇为冻干保护剂制备冻干粉,测定其平均粒径、Zeta电位、包封率、载药量、体外释药。大鼠灌胃给予厚朴酚及其PLGA纳米粒混悬液(50 mg/mL)后,于0.25、0.5、1、2、2.5、3、4、6、10、12 h采血,HPLC法测定厚朴酚血药浓度,计算主要药动学参数。结果冻干后,所得纳米粒的Zeta电位、包封率、载药量低于冻干前,平均粒径更高,体外释药符合Weibull方程(R~2=0.978 3)。纳米粒t_(max)、C_(max)、AUC_(0~)_t、AUC_(0~∞)高于原料药(P0.05,P0.01),相对生物利用提高至2.17倍。结论 PLGA纳米粒具有体外缓释作用,可提高厚朴酚口服生物利用度。  相似文献   

2.
《中成药》2019,(7)
目的制备去氢骆驼蓬碱聚乳酸纳米粒,并研究其药动学行为。方法制备纳米粒后,测定其粒径、PDI、Zeta电位、包封率、载药量、累积释放度。然后,绘制血药浓度-时间曲线,计算药动学参数。结果纳米粒平均粒径(195.38±2.02)nm,PDI 0.131±0.034,Zeta电位(-19.48±0.36)mV,包封率(76.37±1.08)%,载药量(8.81±0.25)%,24 h内累积释放度82.17%,释药过程符合Weibull模型(r=0.985 7)。与去氢骆驼蓬碱比较,纳米粒T_(max)、C_(max)、AUC_(0~)_t、AUC_(0~∞)显著升高(P0.05,P0.01)。结论聚乳酸纳米粒可促进去氢骆驼蓬碱体内吸收,提高其口服生物利用度,并具有明显的缓释作用。  相似文献   

3.
《中成药》2020,(6)
目的制备蒙花苷磷脂复合物固体脂质纳米粒,并研究其体内药动学。方法乳化-超声分散法制备固体脂质纳米粒,考察其粒径、Zeta电位、包封率、载药量。SD大鼠灌胃给予蒙花苷、蒙花苷磷脂复合物、蒙花苷磷脂复合物固体脂质纳米粒的0.5%CMC-Na混悬液(含40 mg/kg蒙花苷)后,HPLC法测定蒙花苷血药浓度,计算主要药动学参数。结果蒙花苷磷脂复合物固体脂质纳米粒的粒径为(216.72±3.57)nm,Zeta电位为(-8.7±0.7)mV,包封率为82.06%,载药量为4.72%。与原料药比较,磷脂复合物、固体脂质纳米粒t_(max)延长(P0.05),C_(max)、AUC_(0~)_t、AUC_(0~∞)升高(P0.05,P0.01),以后者更明显(P0.05,P0.01),相对生物利用度分别增加至1.39、2.89倍。结论固体脂质纳米粒可进一步促进蒙花苷磷脂复合物体内吸收,提高其生物利用度。  相似文献   

4.
《中成药》2021,(9)
目的制备木犀草素固体脂质纳米粒,并评价其体内药动学。方法乳化蒸发-低温固化法制备固体脂质纳米粒后,考察其形态、包封率、载药量、粒径、Zeta电位、体外释药。12只大鼠随机分为2组,分别灌胃给予木犀草素及其固体脂质纳米粒冻干粉的0.5%CMC-Na混悬液(10 mg/kg),于0.15、0.5、0.75、1、1.5、2、4、6、8、12 h采血,HPLC法测定木犀草素血药浓度,计算主要药动学参数。结果所得固体脂质纳米粒呈类球形或球形,平均包封率为85.24%,载药量为5.24%,粒径为176.35 nm, Zeta电位为-33.8 mV,24 h累积溶出度为71.5%,体外释药符合Weibull模型(R~2=0.979 2)。与原料药比较,固体脂质纳米粒t_(max)延长(P0.01),C_(max)、AUC_(0~)_t、AUC_(0~∞)升高(P0.01),相对生物利用度提高至2.28倍。结论固体脂质纳米粒可促进木犀草素口服吸收,提高其生物利用度。  相似文献   

5.
 目的研究不同脱乙酰度及不同相对分子质量的壳聚糖(CS)对壳聚糖纳米粒体外性质的影响,为载药壳聚糖纳米粒的处方优化提供实验依据。方法以去甲斑蝥素(NCD)为模型药物,以不同脱乙酰度、不同相对分子质量壳聚糖为主要膜材,采用离子交联法制备壳聚糖纳米粒(CS-NP),考察纳米粒的形态、粒径、Zeta电位、药物包封率、载药量及体外释放特征。结果该方法制备的CS-NP外观呈圆形,粒径均匀。随着CS的脱乙酰度的降低,纳米粒粒径增大,Zeta电位降低,药物包封率及载药量均下降,且体外释药速度加快;随着CS的相对分子质量降低,纳米粒粒径变小,Zeta电位、药物包封率及载药量无明显变化, 但体外释药速度增加。结论CS的脱乙酰度、相对分子质量对纳米粒的体外性质有较大的影响,可通过选用不同脱乙酰度或相对分子质量的CS,制备得到不同粒径的壳聚糖纳米粒,并达到调节药物释放速度的目的。  相似文献   

6.
目的 制备薯蓣皂苷元白蛋白纳米粒,并考察其体内药动学。方法 高压均质法制备白蛋白纳米粒,单因素试验优化处方,测定其包封率、载药量、粒径、Zeta电位、溶解度、体外释药,分析其晶型、稳定性。18只大鼠随机分为3组,分别灌胃给予薯蓣皂苷元、物理混合物、薯蓣皂苷元白蛋白纳米粒的0.5%CMC-Na混悬液(30 mg/kg),于0.5、1、2、3、4、6、9、12、18 h采血,HPLC法测定薯蓣皂苷元血药浓度,计算主要药动学参数。结果 最佳处方为薯蓣皂苷元用量60 mg,水相pH值8.5,白蛋白用量0.9 g,均质压力135 MPa,均质次数10次,包封率为93.59%,载药量为5.70%,粒径为163.72 nm, Zeta电位为-21.67 mV。白蛋白纳米粒溶解度高于原料药、物理混合物,模拟胃液、模拟肠液中其24 h内累积溶出率高于原料药。薯蓣皂苷元在白蛋白纳米粒中以无定形态存在,6个月内稳定性良好。与原料药、物理混合物比较,白蛋白纳米粒tmax缩短(P<0.05),t1/2延长(P<0.05),Cmax、A...  相似文献   

7.
《中药材》2019,(3)
目的:制备隐丹参酮固体脂质纳米粒,比较大鼠灌胃给药后生物利用度提高情况。方法:薄膜超声法制备隐丹参酮固体脂质纳米粒,考察固体脂质纳米粒的粒径、Zeta电位和体外释放模型。将SD大鼠随机分为原料药组和隐丹参酮固体脂质纳米粒组,测定隐丹参酮的血药浓度,计算主要药动学参数。结果:隐丹参酮固体脂质纳米粒外观呈浅橙色乳光,平均粒径为(213.55±9.67)nm,Zeta电位为(-34.2±3.4)mV,包封率为(81.18±1.62)%,载药量为(5.25±0.67)%。隐丹参酮固体脂质纳米粒体外释药具有明显的缓释特征,释药模型符合Weibull模型:LnLn(1/1-M_t/M_∞)=0.8238Lnt-2.1241(r=0.9872)。药动学结果显示,隐丹参酮原料药的AUC_(0~t)为(622.59±107.04)μg/L·h,隐丹参酮固体脂质纳米粒AUC_(0~t)为(1 143.72±163.08)μg/L·h,相对生物利用度提高至1.84倍。结论:固体脂质纳米粒可有效促进隐丹参酮口服吸收,提高其口服吸收生物利用度。  相似文献   

8.
《中药材》2018,(5)
目的:制备金合欢素聚乳酸纳米粒,研究其在SD大鼠体内的药动学情况。方法:以聚乳酸为载体,采用改良的自乳化溶剂挥发法制备金合欢素聚乳酸纳米粒,并对其粒径、Zeta电位和体外释放进行表征。以金合欢素混悬液为对照组,进行SD大鼠口服金合欢素聚乳酸纳米粒的体内药动学研究。结果:金合欢素聚乳酸纳米粒包封率为(81.43±1.27)%,载药量为(6.08±0.32)%;平均粒径为(213.62±3.89)nm;Zeta电位为(-33.16±0.17)mV;并且体外溶出试验表明其具有明显的缓释特征。体内药动学研究结果表明,金合欢素聚乳酸纳米粒的相对生物利用度提高了2.28倍。结论:聚乳酸纳米粒可显著改善金合欢素的药动学行为,提高了口服吸收生物利用度。  相似文献   

9.
李娜  颜洁  关志宇  朱卫丰  钟凌云  周冬艳 《中草药》2020,51(15):3894-3900
目的制备及表征葛根素壳聚糖/海藻酸钠口服纳米粒(Pur-CS/SA-NPs),并进行药动学研究。方法采用自组装法制备Pur-CS/SA-NPs,对Pur-CS/SA-NPs混悬液和冻干粉的形态、粒径、多分散指数(PDI)、Zeta电位、包封率、载药量、微观结构等进行表征;建立葛根素LC-MS/MS分析方法,测定大鼠口服给予Pur-CS/SA-NPs后血浆中葛根素的浓度,考察其药动学特征。结果 Pur-CS/SA-NPs混悬液和冻干粉的形态结构完整,其中Pur-CS/SA-NPs混悬液的粒径为(208.327±1.870)nm,PDI为0.131±0.006,包封率为(89.056±1.680)%,载药量为(44.528±0.840)%,Pur-CS/SA-NPs冻干粉的粒径为(260.000±0.475)nm,Zeta电位为(47.300±0.208)mV,包封率为(86.234±0.873)%,载药量为(43.117±0.234)%,无新化学键和晶体形成;Pur-CS/SA-NPs的药时曲线下面积(AUC_(0~24)和AUC_(0~∞))、达峰时间(t_(max))、达峰浓度(C_(max))分别为(833.067±132.546)mg·h/L、(844.919±154.768)mg·h/L、(1.000±0.098)h、(236.318±36.864)mg/L,葛根素的AUC_(0~24)、AUC_(0~∞)、t_(max)、C_(max)分别为(250.087±32.156)mg·h/L、(250.091±28.398)mg·h/L、(0.500±0.031)h、(191.830±17.963)mg/L,Pur-CS/SA-NPs的AUC_(0~24)、AUC_(0~∞)、t_(max)、C_(max)分别为葛根素的3.331、3.378、2.000、1.232倍。结论自组装法制备的Pur-CS/SA-NPs形态结构稳定,口服给药后药物在体内的AUC_(0~24)、AUC_(0~∞)、t_(max)均显著增大,循环时间也相对延长,显著提高了葛根素的生物利用度。  相似文献   

10.
目的制备羟基喜树碱聚乙二醇化聚十六烷基氰基丙烯酸酯(PEG-PHDCA)纳米粒,并进行表征。方法酯化、缩聚法制备PEG-PHDCA,凝胶渗透色谱法(GPC)测定新合成材料的相对分子质量,纳米沉淀法制备纳米粒,测定其粒径、载药量、包封率,透析法考察其体外释药特性。结果所得纳米粒相对分子质量为2 300~2 700,能较好地包埋喜树碱,平均粒径为(86.5±7.2)nm,Zeta电位为(-16.34±2.4)m V,包封率和载药量分别为(90.23±1.13)%和(3.17±0.15)%。载药体系能实现药物良好的体外缓释。结论 PEG-PHDCA适合作为纳米制剂的载体。羟基喜树碱PEG-PHDCA纳米粒能提高药物的水溶性,并可实现其体外缓释。  相似文献   

11.
目的:制备壳聚糖修饰的丹皮酚聚乙二醇-(聚乳酸-羟基乙酸共聚物)(PEG-PLGA)纳米粒,对其体外性质进行表征,考察纳米粒的体外释药性能,为丹皮酚的新型纳米制剂研究提供参考。方法:以PEG-PLGA为载体材料,壳聚糖为表面修饰剂,采用纳米沉淀法制备了壳聚糖修饰的丹皮酚PEG-PLGA纳米粒,利用正交试验优化处方工艺,并对其体外性质进行表征。以p H 7.4磷酸盐缓冲液为释放介质,考察壳聚糖修饰的丹皮酚PEG-PLGA纳米粒的体外释药行为。结果:载药纳米粒经壳聚糖修饰后,Zeta电位由负电荷转为正电荷且更加稳定,粒径略有增加。制备出的纳米粒外观呈球形,平均粒径和Zeta电位分别为(96.6±3.2)nm,(30.61±0.34)m V,载药量及包封率分别为10.87%和79.37%。体外释药试验表明载药纳米粒24 h的累计释放率62.4%。结论:按优选的处方成功制备了壳聚糖修饰的丹皮酚PEG-PLGA纳米粒,该制剂的体外性质良好且具有一定的缓释特性。  相似文献   

12.
目的制备延胡索乙素聚乳酸纳米粒,并考察其体内药动学。方法改良的自乳化溶剂挥发法制备聚乳酸纳米粒,测定平均粒径、Zeta电位、包封率、载药量、体外释药,透射电镜观察形态。大鼠随机分为2组,分别灌胃给予延胡索乙素及其聚乳酸纳米粒0??5%CMC?Na混悬液(20 mg/kg),于0、0.25、0.5、1、2.0、2.5、3、4、6、8、10、12 h采血,HPLC法测定延胡索乙素血药浓度,计算主要药动学参数。结果所得纳米粒呈球形,平均粒径为(176.18±5.21)nm,Zeta电位为(-11.1±1.5)mV,包封率为(76.64±0.23)%,载药量为(5.01±0.12)%,36 h内累积释放度低于30%,释药过程符合Weibull模型(r=0.9884)。与原料药比较,聚乳酸纳米粒tmax、t1/2延长(P<0.05,P<0.01),Cmax、AUC0-t、AUC0-∞升高(P<0.01),相对生物利用度增加至2.41倍。结论聚乳酸纳米粒可促进延胡索乙素体内吸收,改善其口服生物利用度。  相似文献   

13.
王风云  李伟宏 《中成药》2020,(5):1114-1119
目的 制备莪术醇固体脂质纳米粒,并评价其抗肿瘤活性.方法 乳化超声分散法制备固体脂质纳米粒,测定粒径、Zeta电位、包封率、载药量、体外释药、光稳定性(4 500 lx,25℃).MTT法考察固体脂质纳米粒对人宫颈癌上皮细胞(Caski细胞)的抑制作用.结果 所得莪术醇固体脂质纳米粒粒径为(198.84±4.17) nm,Zeta电位为(-21.8±2.5)mV,包封率为83.27%,载药量为3.83%,36 h内累积溶出度为61.81%;体外释药符合Weibull模型(R2 =0.960 5);光照72 h后,莪术醇含有量仅降低了3.42%;对Caski细胞有较好的抑制作用,并呈量效和时效依赖性(P<0.05,P<0.01).结论 固体脂质纳米粒可明显提高莪术醇体外抗肿瘤活性.  相似文献   

14.
《中成药》2019,(6)
目的制备蛇床子素纳米结构脂质载体,并考察其体内药动学行为。方法制备纳米结构脂质载体后,测定其包封率、载药量、粒径、Zeta电位、体外释药行为。然后,大鼠分别灌胃给予蛇床子素和纳米结构脂质载体,测定血药浓度,计算主要药动学参数。结果纳米结构脂质载体粒径为226.25 nm,Zeta电位为-15.17 mV,包封率为88.17%,载药量为5.06%,24 h内累积释放度为77.12%。与蛇床子素组比较,纳米结构脂质载体组T_(max)、T_(1/2)、C_(max)、AUC_(0~t)、AUC_(0~∞)显著升高(P0.05,P0.01)。结论纳米结构脂质载体可有效改善蛇床子素体内吸收,提高其生物利用度。  相似文献   

15.
王晓明  张智强 《中成药》2022,(2):356-362
目的 制备柚皮素-PLGA纳米粒,并考察其体内药动学.方法 纳米沉淀法制备PLGA纳米粒,在单因素试验基础上采用正交试验优化处方,测定包封率、载药量、粒径、Zeta电位、体外释药.大鼠分别灌胃给予柚皮素及其PLGA纳米粒混悬液(40 mg/kg)后采血,HPLC法测定柚皮素血药浓度,计算主要药动学参数.结果 最佳处方为...  相似文献   

16.
《中成药》2021,(8)
目的制备田蓟苷纳米结构脂质载体,并研究其体内药动学。方法乳化蒸发-低温固化法制备纳米结构脂质载体,测定其包封率、载药量、粒径、Zeta电位、体外释药。在单因素试验基础上,以田蓟苷用量、脂质质量浓度、表面活性剂体积分数为影响因素,包封率为评价指标,Box-Behnken响应面法优化制备工艺。于0.5、1、1.5、2、2.5、3、4、6、8、10、12 h采血,HPLC法测定田蓟苷血药浓度,计算主要药动学参数。结果最佳条件为田蓟苷用量53.9 mg,脂质质量浓度7.1 mg/mL,表面活性剂体积分数1.5%,包封率为82.5%,载药量为2.32%,粒径为176.5 nm, Zeta电位为-37.7 mV,48 h内累积释放度大约为80%,体外释药符合Weibull模型(R~2=0.982 9)。与原料药比较,纳米结构脂质载体t_(max)延长(P0.01),C_(max)、AUC_(0~)_t、AUC_(0~∞)升高(P0.01),相对生物利用度提高至4.07倍。结论纳米结构脂质载体可有效改善田蓟苷口服吸收生物利用度。  相似文献   

17.
刘会珍  董丹丹  范明松 《中草药》2020,51(17):4442-4448
目的制备厚朴酚固体分散体、磷脂复合物和固体脂质纳米粒,并分别比较其在SD大鼠体内的药动学行为。方法溶剂挥发法制备厚朴酚固体分散体和磷脂复合物,采用X射线粉末衍射(X-Ray Powder Diffraction,XRPD)技术分析厚朴酚的存在状态。高压均质法制备厚朴酚固体脂质纳米粒,并测定其粒径分布及Zeta电位。以厚朴酚原料药为参考,分别比较固体分散体、磷脂复合物和固体脂质纳米粒的体外溶出情况。SD大鼠分别ig给予厚朴酚、固体分散体、磷脂复合物和固体脂质纳米粒混悬液,HPLC法测定厚朴酚血药浓度,计算主要药动学参数,并比较药动学行为及相对生物利用度。结果厚朴酚在固体分散体和磷脂复合物中均以无定型状态存在。厚朴酚固体脂质纳米粒Zeta电位为(-29.16±1.83)mV,平均粒径为(161.37±3.77)nm。厚朴酚原料药在12 h内的累积溶出度为30.6%,而厚朴酚固体分散体、固体脂质纳米粒和磷脂复合物将其12h内累积溶出度分别提高至96.3%、76.4%、45.9%。ig给药后C_(max)、AUC_(0~t)和AUC_(0~∞)等药动学参数与原料药相比均具有显著提高。其中,磷脂复合物、固体分散体和固体脂质纳米粒将其C_(max)由(429.67±53.12)ng/mL分别提高至(533.62±59.01)、(721.73±103.44)、(1 063.21±108.22)ng/mL。相对生物利用度分别提高至1.38、2.12、3.45倍。结论 3种制剂均可提高厚朴酚口服吸收生物利用度,但厚朴酚固体脂质纳米粒效果更为明显。  相似文献   

18.
杨娟  钟莹  尚曙玉  贾安 《中成药》2021,(4):841-846
目的制备白藜芦醇磷脂复合物固体脂质纳米粒,并考察其体内药动学。方法乳化超声-低温固化法制备固体脂质纳米粒,测定其粒径、Zeta电位、包封率、载药量、体外稳定性、体外释药。18只大鼠随机分为3组,分别灌胃给予原料药、磷脂复合物、固体脂质纳米粒0.5%CMC-Na混悬液(20 mg/kg),于0、2、4、8、12、24 h采血,HPLC法测定白藜芦醇血药浓度,计算主要药动学参数。结果固体脂质纳米粒平均粒径为218.6 nm,Zeta电位为-15.6 mV,包封率为84.07%,载药量为2.62%,48 h内累积溶出度为76.18%,白藜芦醇含量在48 h内无明显变化。与原料药、磷脂复合物比较,固体脂质纳米粒tmax延长(P<0.01),Cmax、AUC0~_t、AUC0~∞升高(P<0.01),其相对生物利用度与原料药相比增加至3.00倍。结论固体脂质纳米粒可提高白藜芦醇磷脂复合物体外溶出度和稳定性,促进该成分体内吸收。  相似文献   

19.
采用高压均质法制备丹参酮Ⅱ_A白蛋白纳米粒,以粒径、包封率和载药量为评价指标,采用星点设计-效应面法优选处方,进而考察其体外抗肿瘤效果。结果表明,采用优选的处方制备的丹参酮Ⅱ_A白蛋白纳米粒形态为规则的圆球形,粒径分布均匀,平均粒径为(175.7±3.07)nm,包封率和载药量分别为90.8%±1.47%和5.52%±0.09%。对于人早幼粒细胞白血病NB4细胞,载丹参酮Ⅱ_A白蛋白纳米粒较游离药物有更优的抑瘤效果。白蛋白纳米粒制备工艺简便,可显著改善丹参酮Ⅱ_A的溶解度,有助于拓展其在抗血液肿瘤方面的应用。  相似文献   

20.
朱文静  张良珂 《中草药》2018,49(9):2057-2062
目的制备载和厚朴酚(HK)介孔二氧化硅(MSN)包覆聚吡咯纳米粒(PPy@MSN-HK),考察其体外释放特性。方法首先制备聚吡咯纳米粒,然后在其表面包裹MSN壳层,再吸附HK,即得PPy@MSN-HK。依次从透射电镜图、粒径、Zeta电位、载药量、包封率、红外光谱分析、体外光热研究及体外释放度等方面进行评价,采用相似因子(f2)法分析释放曲线,并运用多种常用数学模型拟合溶出曲线。结果透射电镜图显示,制备的MSN包覆聚吡咯纳米粒(PPy@MSN)粒径大小均一,分布均匀,平均粒径为(220.4±4.2)nm,多分散系数为0.042±0.010,Zeta电位为(-21.1±0.8)m V,载药量为(2.58±0.53)%,包封率为(75.04±0.95)%。体外光热实验结果表明,在照射激光功率密度不变的情况下,随着纳米粒质量浓度逐渐增大,纳米粒混悬液温度变化值明显增大,说明PPy@MSN具有良好的光热效应。体外释放实验表明,PPy@MSN-HK与HK原料药的释放曲线不相似,分别以Ritger-Peppas、Logistic方程拟合最佳。原料药释放曲线最接近Ritger-Peppas方程(R2=0.997 32);PPy@MSN-HK释放曲线用Logistic方程拟合最好(R~2=0.997 88)。结论采用水溶液法成功制备了PPy@MSN-HK,为肿瘤治疗提供新的给药策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号