首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Underground steel pipelines are protected by coatings and cathodic protection (CP). The pipeline corrosion occurs when the coating is disbonded away from a defect or holiday to form a crevice and the corrosion rate varies temporally and spatially in the crevice. In the presence of dissolved oxygen (O2) in soil ground water, a differential O2 concentration cell may develop in the crevice because O2 diffuses more readily into the crevice through the holiday than through the disbonded coating. CP can decrease or eliminate the O2 concentration cell depending on the potential applied at the holiday. Since the coatings are usually non-conductive, CP is unable to protect the steel surface deep inside the crevice. The transport of dissolved O2, and that of dissolved carbon dioxide (CO2) if present, into the crevice through holiday can be key to determining the crevice corrosion rate. In this work, the transient and steady state behavior of the corrosion process is investigated. The effect of the cathodic portion of iron vs. ferrous ion redox reaction on the crevice corrosion rate, which is often neglected traditionally, is further studied. At steady state, the effect of dissolved O2 on the crevice corrosion rate and the added effect of dissolved CO2 are mathematically modeled.  相似文献   

2.
阴极极化条件下X70钢的缝隙腐蚀行为   总被引:1,自引:0,他引:1  
采用矩形缝隙装置,测量了模拟剥离涂层下不同位置X70钢的电位、溶液pH值及氧含量随时间的变化曲线.研究了外加阴极极化电位、涂层破损尺寸和缝隙厚度对X70钢在Nu2SO4溶液中的缝隙腐蚀行为的影响.结果表明,缝隙内氧气迅速耗尽并使溶液pH值升高,氧耗尽与外加阴极极化电位无关.随着缝口阴极极化程度加大,缝隙内各点电位负移,有效保护距离增加.溶液介质电位(IR)降集中在缝口.极化程度过高会导致氢气的析出.减小缝隙厚度和破损点尺寸使缝隙内极化程度降低.  相似文献   

3.
CREVICE CORROSION BEHAVIOR OF THE STEEL X70 UNDER CATHODIC POLARIZATION   总被引:1,自引:0,他引:1  
陈旭  李晓刚  杜翠薇  梁平 《金属学报》2008,44(12):1431-1438
采用矩形缝隙装置, 测量了模拟剥离涂层下不同位置X70钢的电位、溶液pH值及氧含量随时间的变化曲线. 研究了外加阴极极化电位、涂层破损尺寸和缝隙厚度对X70钢在Na2SO4溶液中的缝隙腐蚀行为的影响. 结果表明, 缝隙内氧气迅速耗尽并使溶液pH值升高, 氧耗尽与外加阴极极化电位无关. 随着缝口阴极极化程度加大, 缝隙内各点电位负移, 有效保护距离增加. 溶液介质电位(IR)降集中在缝口. 极化程度过高会导致氢气的析出. 减小缝隙厚度和破损点尺寸使缝隙内极化程度降低.  相似文献   

4.
Taking advantage of microelectrode technique, the local potential and pH in a crevice simulating disbonded coating on X70 pipeline steel were investigated as a function of cathodic protection (CP) in a near neutral pH soil bulk solution bubbled with 5% CO2/N2 gas. The experimental potential–pH (E–pH) diagrams were established for the steel in the crevice. Stress corrosion cracking (SCC) susceptibility of the steel in the local environment in the crevice was analyzed based on the experimental E–pH diagrams. The results showed that the local steel potential in the deep of the crevice was independent on CP potential applied at the opening. Due to the effect of the atmospheric CO2, a near-neutral pH local environment promoting near-neutral pH SCC (also known as transgranular SCC, TGSCC) might be harbored in the crevice even with normal CP at the opening. During CP interruption, the steel potential decay and CO2 absorption (pH decrease) might shift E–pH points into a susceptibility region of near-neutral pH SCC.  相似文献   

5.
A.Q. Fu 《Corrosion Science》2009,51(4):914-920
Corrosion of X65 pipeline steel under a disbonded coating was studied by scanning Kelvin probe measurements. Three types of specimen were designed and prepared to investigate the effects of immersion time, oxygen concentration and wet-dry cycle on Kelvin potential profile and thus corrosion behavior of the steel. Kelvin potential measured on “intact” area is shifted negatively with time, indicating an increasing water uptake under the “intact” coating. With the increase of the amount of solution, it is expected that the electrolyte concentration and electrochemical reaction rate change, resulting in a significant decrease of interfacial potential. Moreover, there is a more negative Kelvin potential on disbonded area than that on “intact” area. The negative shift of Kelvin potential is attributed to corrosion reaction of steel occurring under the disbonded coating. Due to the narrow geometry of coating disbondment, an oxygen concentration difference exists along the depth of the disbondment. The corrosion behavior under disbonded coating strongly depends on the oxygen partial pressure and local geometry. With continuous purging of nitrogen and removing of oxygen, Kelvin potential tends to be identical throughout the disbonded area. During wet-dry cycle, the thickness of solution layer trapped under disbonded coating decreases due to evaporation of water. With the decrease of solution layer thickness, the measured Kelvin potential decreases, indicating that the effect associated with the reduction of oxygen solubility in the concentrated solution during drying of electrolyte is favored over that related to the enhanced oxygen diffusion and reduction. There exists a critical thickness of solution layer, below which the oxygen solubility is sufficiently low to support the electrochemical corrosion reaction of steel.  相似文献   

6.
综述了在有阴极保护的条件时剥离涂层下缝隙内电位电流的分布和化学环境的变化、阴极保护防止缝隙腐蚀的机理、微生物腐蚀的机理以及前人提出的关于剥离涂层下微生物腐蚀与阴极保护相互作用的规律,并展望了对于解决剥离涂层下微生物腐蚀难题需进一步的实验研究.  相似文献   

7.
利用分段电极测量了阴极保护下矩形模拟剥离涂层底部Q345钢的电位和电流分布,研究了浓度为0.5 mol/L的静态溶液及充氧动态溶液中,不同阴极保护电位、缝隙宽度以及漏点尺寸条件下缝内阴极极化水平。结果表明,充氧扰动作用减弱了缝内阴极极化水平,致使钢片在扰动溶液环境中比在静态溶液需要更高水平的阴极保护,才能有效抑制缝内金属腐蚀。缝隙宽度和漏点尺寸对充氧扰动改变缝内极化水平的影响明显。  相似文献   

8.
A model developed in an earlier work was used in this work to investigate the effect of coating permeability on the evolution of solution chemistry, corrosion potential, and rate in a crevice formed between a steel surface and a coating disbonded from it. The crevice gap varies along distance from the mouth, and the coating is permeable to ions and/or oxygen (O2). The earlier work focused specifically on modeling the effect of variable gap (on crevice corrosion) with the coating impermeable to either ions or O2. In both works, the crevice chemistry was an aerated, diluted sodium chloride solution, which at the mouth was set to be different from that initially in the crevice. The results of this work show that a permeable coating behaves like a membrane, which, under a cathodic polarization at the crevice mouth, tends to raise the in-crevice sodium ion concentration and pH more rapidly relative to an impermeable coating. Later, as the sodium ion concentration and pH in the crevice become greater than at the mouth, the permeable coating tends to reverse the transport direction for ions. At a mouth potential of ?0.900 V vs. saturated Cu/CuSO4, the cathodic current is sufficient to suppress all O2 penetrating the crevice both from the mouth and through the coating. The practical implication is that in the presence of sufficient cathodic polarization, a permeable coating, when disbonded, can still be capable of protecting the substrate steel from corrosion attack.  相似文献   

9.
采用分段电极测量阴极保护下矩形模拟剥离涂层底部Q345钢的电位和电流的分布。研究扰动、溶液氧含量和溶液初始pH值对缝内阴极极化行为的影响。结果表明,扰动作用能够迫使本体溶液中的氧进入缝内,降低缝内Q345钢的阴极极化程度。在低电导率溶液中,扰动作用能够在缝内诱发明显的氧浓差腐蚀电池,加剧缝底部Q345钢的腐蚀。本体溶液氧含量以及溶液初始pH值对缝内Q345钢的最终阴极极化水平影响很小。  相似文献   

10.
A. Eslami  R. Kania  J. Been  W. Chen 《Corrosion Science》2010,52(11):3750-3756
A novel test setup has been used in this study to simulate stress corrosion cracking initiation under a disbonded coating on an X-65 pipeline steel. In this setup, the synergistic effects of cyclic loading, cathodic protection and soil solution environment under disbonded coatings have been considered. When the X-65 pipeline steel was exposed to the test environment, there existed a wide range of corrosion products on the steel surface in the gradient of cathodic protection. Increasing the test time and the maximum stress increased the possibility of stress corrosion cracking initiation in regions with a high susceptibility to pitting corrosion.  相似文献   

11.
A.Q. Fu 《Corrosion Science》2010,52(7):2511-4940
Potentiodynamic polarization measurements were performed on X70 pipeline steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating. A conceptual model was developed to illustrate the effects of the thickness and concentration of the trapped solution layer, cathodic protection (CP) potential and stress on stress corrosion crack initiation and propagation in pipelines. It was found that the passivity of the steel depended on the solution layer thickness, and the passive current density decreased with the thinning of the solution layer. With an increasing solution concentration, the role of the solution layer thickness in the steel passivity became unapparent, which was attributed to a strong passivating ability of bicarbonate and carbonate ions. Furthermore, with the decrease of the solution layer thickness, the pitting potential was shifted negatively. However, an increase of the solution concentration enhanced the resistance of the steel to pitting. A pre-application of CP would degrade the passivity of the steel due to the hydrogen-enhanced activity of the steel. Moreover, an applied stress shifted the pitting potential negatively, and decreased the passive potential range.  相似文献   

12.
The crevice corrosion behavior of X70 pipeline steel in NaHCO3 solution with varying Cl- concentration was investigated by potentiostatic polarization method in terms of the initiation and development of crevice corrosion. Results show that inside the crevice the X70 steel could suffer from localized corrosion in NaHCO3 solution by polarization potential-0.4 V. The acidification initiated firstly at the crevice mouth and then extended gradually to the bottom. The hydrogen evolution could be observed with the development of corrosion and acidification. The cathodic reaction changed from the reduction of the dissolved oxygen to the reduction of hydrogen ions. The presence of Cl- did not change the crevice corrosion mechanism. With the increase of Cl- concentration, however, the crevice corrosion rate increased. The corrosion region moved towards the crevice bottom gradually and then pitting corrosion occurred with the increasing polarization potential. The initiation of crevice corrosion was determined by the polarization potential. © 2016, Corrosion Science and Protection Technology. All rights reserved.  相似文献   

13.
Potential and current distributions in a cathodically protected crevice between a simulated coating and segmented mild steel electrodes were measured in dilute NaCl solutions. The distributions became more uniform with time due to an increase in solution conductivity and depletion of dissolved oxygen in the crevice. Generally, a negative shift of control potential and an increase in initial solution conductivity and crevice thickness resulted in a higher polarization level on the steel. However, if the control potential is too negative, the polarization level may be lower than that under a suitable control potential because of hydrogen evolution. On the basis of these results, a mechanism of cathodic protection against crevice corrosion in high-resistivity environments was proposed.  相似文献   

14.
采用矩形缝隙装置,研究了阴极极化条件下本体Na2SO4溶液浓度、pH 值以及本体溶液的含氧状况对模拟剥离涂层下溶液的化学和电化学环境的影响,分析了剥离区域内X70钢表面发生的电化学反应。结果表明,增加本体Na2SO4溶液的浓度虽然有利于阴极电流在剥离涂层内传输,但会导致钢板表面钝化膜的破坏而发生腐蚀。本体溶液pH值为酸性时缝内的化学环境变化迅速,缝口处发生腐蚀反应;而碱性条件下剥离区的pH值基本不变。本体溶液供氧量的减少降低了剥离区域内阴极保护的有效距离。外加电位的中断使缝内溶液酸化,X70钢处于自腐蚀状态。  相似文献   

15.
Crevice corrosion of four kinds of stainless steel, SUS316L, NAS64, NAS185N and NAS254N, in saturated NaCl solution at temperatures up to 100 °C was investigated using the multichannel electrode method. In this method, a pile of five individual working electrodes (WEs) of stainless steel sheet were embedded in epoxy resin and a small hole penetrating through the five WEs was treated as an artificial crevice. Time transition and distribution of the coupling current between the five WEs were measured as a function of crevice depth, kind of stainless steel, temperature and concentration of dissolved oxygen (DO). Anodic or cathodic coupling current on the five WEs of SUS316L changed depending on their corroding state. On the other hand, NAS64, NAS185N and NAS254N showed that the WE outside the crevice contributed as a cathode and that WEs inside the crevice contributed as an anode. The coupling current on SUS316L was strongly affected by concentration of DO, while the coupling current on NAS64, NAS185N and NAS254N was not affected by DO, probably due to the establishment of a passive state inside the crevice.  相似文献   

16.
目的研究酸性土壤环境中剥离涂层下X80管线钢应力腐蚀行为及机理。方法采用电化学极化曲线测试、慢应变速率拉伸试验和腐蚀形貌扫描电子显微镜观察,对服役于鹰潭土壤环境的X80管线钢在剥离涂层下滞留液中的应力腐蚀行为及机理进行了分析研究。结果 X80管线钢在剥离涂层下的滞留液中具有一定的SCC敏感性,应力腐蚀开裂类型属于TGSCC,敏感性较大位置为近漏点处、剥离区中下部及剥离区底部,且近漏点处滞留液体系中X80钢的SCC机理受阳极溶解(AD)机制控制,剥离区底部滞留液中SCC机理受阳极溶解+氢脆(AD+HE)的混合机制控制。结论服役于酸性土壤中的X80管线钢在外防腐涂层破损后,除开放破损处将发生腐蚀外,剥离涂层下的管线钢还会存在一定的应力腐蚀敏感性。  相似文献   

17.
The crevice corrosion behavior of XTO steel was investigated with a wedge-shaped crevice assembly under -1000 m V (SCE) cathodic polarization in the solutions with various HCO3 concentrations. The potential, current, pH and the oxygen content within the crevice were measured with or without outside coupled specimen. The results indicated that the polarization potential of XTO steel in the crevice dropped with the increase of time under the cathodic polarization. There was a remarkable influence of HCO3 concentration on the potential of XTO steel in the crevice. When HCO3 concentration was up to 0.125%, the surface of the metal was covered with the corrosion products that resulted in the polarization extent of XTO steel decreased. The pH value in the crevice rose and it dropped gradually from the crevice mouth to the bottom under the cathodic polarization. With the increasing of HCO3 concentration, the hydrolyzation reaction of metal in the crevice bottom aggravated. Most of the dissolved oxygen in the crevice was consumed by the cathodic current. The maximum cathodic current on the metal surface was at the crevice mouth and it was much more than that at the crevice bottom.  相似文献   

18.
Crevice corrosion of iron was evaluated using the multichannel electrode method in which 10 individual working electrodes (WEs) of pure iron were embedded in resin, placed in an artificial crevice in the range from 0.5 mm to 2.0 mm, and immersed in 0.51 mol dm−3 NaCl solution. The WEs were connected to an electronic circuit which allowed galvanic coupling between them and measurement of their individual coupling current or open circuit potential. Time-transient of the spatial distribution of coupling current and open circuit potential showed sequential transition of the coupling current on WEs at the middle position of the crevice from cathode to anode. The WE near the opening of the crevice initially showed a large anodic current, then a decreasing the anodic current corresponding to the current transition of other WEs, and finally a large cathodic current coupled with the other anodic WEs in the crevice. The transition of coupling current was explained by the change in pH and concentration of dissolved oxygen in the crevice. Thickness of the gap of the artificial crevice affected the transition behavior of coupling current distribution. For example, slower current transition with smaller coupling current was found in the case of a narrower gap. Such properties were related to the introduction and consumption of dissolved oxygen in the crevice solution and the circulation of gap solution from/to the outside of the crevice.  相似文献   

19.
The crevice corrosion behaviour of 13Cr stainless steel in NaCl solution was investigated mainly by electrochemical noise measurements, considering the influences of the crevice opening dimension (a) and the area ratio of the electrode outside the crevice to the one inside the crevice (r). Results show that the increase of r value prolongs the incubation period of crevice corrosion, but crevice corrosion develops rapidly once the crevice corrosion occurs. The crevice corrosion develops preferentially at the crevice bottom and then spreads to the whole electrode surface. Proton could reduce on the uncorroded area and hydrogen bubbles form inside the crevice.  相似文献   

20.
This study investigates the role of CO2 and cyclic stress R-ratio (R = minimum stress/maximum stress) on near-neutral pH SCC initiation mechanism(s) under a disbonded coating of pipeline steel protected by cathodic protection (CP). It was found that depending on CO2 concentration and level of CP, different localized environments with various pH could be formed under the disbonded coating. When cyclic loading was applied, different SCC initiation mechanisms were involved depending on the pH of the localized environments. Reducing the R-ratio had different effects on the initiation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号