首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
研究分布式驱动电动汽车操纵稳定性控制问题。基于模型跟踪控制的思想,采用分层控制结构设计控制器。控制器包含参考模型、运动跟踪控制器、控制分配器、参数估计模块。采用带质心侧偏角约束的2自由度车辆模型作为参考模型,设计非线性滑模变结构运动跟踪控制器;针对过驱动系统引入控制分配理论,采用二次规划法设计控制分配器,利用有效集方法进行求解;设计相关动力学参量的估计模块。利用实车平台对稳定性策略进行实车验证,双移线试验与蛇形绕桩试验结果表明:滑模变结构控制器具有较好的收敛性,控制分配模块可以实现四轮纵向力的优化分配,车辆横摆角速度能够较好地跟踪参考横摆角速度。相比无控制车辆,提高平均通过车速,提高平均峰值横摆角速度响应,增加车辆在极限工况下的稳定性。  相似文献   

2.
横摆率是表征车辆横向稳定性的重要指标,是车辆操纵稳定性控制系统中的关键控制变量。PID控制作为最常用的控制方法之一,虽然PID控制易于实现,但参数整定的难题限制其工程应用。基于响应面理论,以前轮转向角幅值和PID控制参数为响应面输入,以车辆横摆率曲线的关键点为响应面输出,构建集成PID控制器的8自由度车辆动力学代理模型。该方法不仅可避免考虑代理模型的时间状态因素,而且能实现PID控制参数的快速整定。数值仿真结果表明:该方法建立的代理模型精度高,整定的PID控制器能实现车辆横摆率对期望横摆率的准确跟踪,有效改善车辆的横向稳定性。  相似文献   

3.
基于滑模变结构控制的车辆稳定性研究   总被引:1,自引:0,他引:1  
直接横摆力矩控制(Direct Yaw Moment Control,DYC)能在极限工况下产生维持车辆稳定行驶所需的附加横摆力矩,从而提高车辆的主动安全性能。采用"Dugoff"轮胎模型,运用MATLAB/SIMULINK软件建立了十六自由度非线性车辆模型和二自由度参考模型,基于滑模变结构控制理论,分别设计了以横摆角速度为控制变量的DYC控制器和以质心侧偏角为控制变量的DYC控制器,并在极限工况下进行仿真。仿真结果表明:所设计的控制器能有效控制车辆的横摆角速度和质心侧偏角,提高了车辆的操纵稳定性。  相似文献   

4.
以四轮转向汽车为研究对象,建立七自由度车辆模型、轮胎模型、理想跟踪模型;设计直接横摆力矩和四轮转向相结合的车辆稳定性控制策略。以跟踪理想的质心侧偏角和横摆角速度为控制目标,设计滑模控制器产生车辆转向所需的横摆力矩和后轮转角,按单侧制动的方法将产生的横摆力矩分配到车辆的四个车轮上,通过制动力矩的分配以及转向角的修正,使车辆转向行驶时的横摆角速度和质心侧偏角跟踪理想模型。针对七自由度模型,在Matlab/Simulink中与比例控制四轮转向进行阶跃输入和正弦输入两种工况下的时域仿真对比。仿真结果表明,基于直接横摆力矩和四轮转向相结合的的控制策略有效减小了质心侧偏角,横摆角速度对理想值有很好的跟踪,提高了车辆的操纵稳定性,同时验证了横摆力矩分配的有效性。  相似文献   

5.
针对四轮毂电机独立驱动汽车各轮力矩解耦可控的特点,分析车辆转向受力对四轮独立驱动电动汽车行驶稳定性的影响,提出四轮独立驱动电动汽车转向稳定性控制策略,为四轮独立驱动电动汽车四轮转矩协调控制,提升整车行驶稳定性提供了思路.基于模型跟踪控制的思想,采用分层控制思想设计控制器,控制器包含参考模型、顶层控制器、底层控制分配器.采用带质心侧偏角约束的2自由度车辆模型作为参考模型,设计出一种新的非线性联合滑模变结构主动控制的顶层控制器,该方法可以在一定程度上实现车辆横摆角速度和质心侧偏角的解耦控制,避免了横摆角速度和质心侧偏角的较大变化,从而保证汽车稳定性.在底层控制分配器中,采用基于轮胎稳定裕度最大化的最优分配方法.在Carsim软件中,搭建四轮轮毂电机独立驱动电动汽车模型,在Simulink软件中搭建控制策略模型.针对双移线工况,Carsim/Simulink联合仿真的结果表明,滑模变结构控制器具有较好的收敛性,控制分配模块可以实现四轮力矩的优化分配,能够提升车辆在极限工况下的稳定性.研究将为轮毂电机驱动车辆分布式协调控制提供理论支撑.  相似文献   

6.
建立以四轮侧偏角为输入的四轮独立转向车辆二自由度动力学模型。以四轮侧偏角绝对值之和为最小值,构建包含前馈和反馈控制的性能指标函数。根据动力学模型静态表达式和理想横摆角速度,获得前馈控制约束条件。建立车辆控制模型和理想跟踪模型,获得反馈控制约束。利用优化理论进行控制器求解,并进行仿真分析,讨论了车辆横摆转矩的选取与作用。建立人-车-路闭环仿真模型,进行模拟道路实验和实车低速跟踪实验,验证了控制器可根据路面附着情况分配各轮转角,充分利用路面附着条件,保证轮胎侧偏角处于较好附着区域。实验表明,控制器具有良好的跟踪性和鲁棒性,进一步提高了车辆的操纵稳定性。  相似文献   

7.
为有效地改善车辆操纵稳定性,设计了主动后轮转向系统(ARS)与基于直接横摆力矩控制(DYC)的双电机分布式驱动系统协同控制方法,并将其应用于FSAE赛车。首先建立ARS及DYC车辆的二自由度模型;基于滑模变结构控制方法,提出协同控制模型,通过ASR控制器控制后轮转向角,减小车辆质心侧偏角,以及直接横摆力矩控制器(DYC)对两个后驱动轮的牵引力矩进行协调分配,实现横摆角速度的有效控制;最后,通过双移线测试仿真验证本文所提出的控制算法能够有效提高赛车弯道行驶的稳定性。  相似文献   

8.
以某款全新开发的电控适时四驱SUV为研究对象,为同时发挥四轮驱动(4WD)与直接横摆力矩控制(DYC)的优势,建立适应于动力性及操纵稳定性的汽车动力学系统模型,提出基于轮胎最小滑移率同时保持横摆角速度跟随的适时四驱智能扭矩分配策略,采用PID算法计算出保持车辆最小滑移率及横摆角速度跟随所需的四驱控制器控制电流并加以控制。然后将该算法移植到单片机中进行低附试验,全油门加速工况、蛇形工况及定圆加速工况试验结果表明:制定的智能扭矩分配策略在迅速抑制车轮打滑的同时能有效提升车辆在低附路面的操纵稳定性,进一步提高了车辆的主动安全性,具有较强的工程实用性。  相似文献   

9.
针对四轮驱动电动汽车行驶时路面峰值附着系数和附着利用率变化的问题,提出利用直接横摆力矩控制提高操纵稳定性的控制策略。该策略采用分层控制,上层控制器负责目标车速的追踪、滑移率调整力矩的计算、以及根据行驶危险程度实现对质心侧偏角和横摆角速度的协调控制,下层控制器包括以轮胎利用率最优为目标的分配算法及集成滑移率控制的分配算法,根据滑移率大小实时切换。Carsim-Simulink联合仿真结果表明,在对开路面行驶时,相比于转矩平均分配控制策略,该控制策略能够使车辆具有良好操稳性的同时保持各车轮处于最佳滑移率区间内,有效改善了车辆性能。  相似文献   

10.
针对分布式驱动电动汽车动力学模型参数非线性扰动影响转矩控制的问题,提出一种新的转矩自适应分层控制方法。建立四轮独立驱动电动汽车二自由度车辆动力学模型及车辆期望动力学模型,设计线性二次型最优控制器实现车辆对理想二自由度模型横摆稳定性参数的跟踪控制,计算出主动附加横摆控制力矩。针对车辆动力学模型参数扰动情况,基于李雅普诺夫稳定性理论,运用自适应控制算法提升线性二次型最优控制器的自适应能力,减小控制对象参数变动造成的控制偏差。搭建CarSim与MATLAB/Simulink联合仿真平台验证了该方法的有效性。仿真实验表明,所设计自适应抗扰转矩控制器可有效提升四轮独立驱动电动汽车的横摆稳定性。  相似文献   

11.
针对具备线控制动系统的车辆弯道制动工况下容易失稳的问题,提出了一种制动力优化分配控制策略,提升了车辆的操纵稳定性。总体采用分层控制的结构,上层运动控制器以理想二自由度车辆模型为参考模型,设计了基于横摆角速度和质心侧偏角联合控制的滑模控制器,用于计算所需的附加横摆力矩;同时通过制动踏板特性来识别驾驶员制动意图从而得出总制动力;下层制动力分配器以轮胎利用率为目标函数,通过序列二次规划法在约束条件范围内优化求解出各车轮所需的制动力。利用MATLAB/Simulink与Carsim进行联合仿真,并与传统的制动力比例分配策略在不同弯道制动工况下进行对比验证。结果表明:提出的制动力优化分配策略在转弯紧急制动工况下不仅能保证驾驶员的期望减速度,同时有效地提升了汽车的横向稳定性。  相似文献   

12.
基于ADAMS与Matlab的车辆稳定性控制联合仿真研究   总被引:3,自引:0,他引:3  
通过ADAMS/Car软件建立车辆虚拟样机模型,设计出一种基于横摆角速度反馈的稳定性控制系统,此系统由四轮制动逻辑控制器和单轮制动力PID控制器组成,并同防抱死刹车系统(Anti-locked braking system,ABS)的轮胎滑移率控制相结合以防止车轮失稳,进行ADAMS与Matlab联合仿真分析。控制系统中,逻辑控制器只需两路信号,不需要对四个车轮进行独立控制,PID控制器设计为使能子系统,接收逻辑控制器发出的激活信号,而ABS控制器当车轮滑移率小于限定值时方解除控制状态,执行稳定性控制逻辑。理论分析和仿真结果表明,构建的车辆稳定性控制系统是一个行之有效的进行综合仿真和优化控制的系统,所采用的联合仿真方法是正确有效的,由ABS系统和PID控制策略组成的控制系统有效提高了车辆的稳定性,所得结果为稳定性控制在车辆工程中的实际应用提供了参考。  相似文献   

13.
文中所研究的汽车动态控制系统是基于模糊逻辑控制的主动前轮转向(AFS)和直接横摆力矩控制(DYC)的集成。控制系统采用分层控制。上层使用模糊逻辑控制器(横摆角速度控制器),输入为横摆角速度偏差及其变化率,其输出为直接横摆力矩控制信号和前轮修正转向角;下层(模糊集成控制器)设计了基于轮胎侧向力工作区的模糊逻辑控制器,通过调整前轮侧向力的方向,激活切换函数来调节模糊逻辑控制器的比例因子。仿真结果表明,使用非线性七自由度车辆模型,与单独的AFS或DYC控制器相比较,使用集成AFS/DYC控制系统,汽车操纵稳定性得到了很大的改善。  相似文献   

14.
提出了一种基于主动前轮转向横摆稳定性控制方法,以横摆角速度和质心侧偏角为控制目标。采用鲁棒性较强的模糊控制方法对汽车稳定性进行控制。建立了整车线性二自由度模型,以反馈系统中的误差信号及其变化率作为模糊系统的输入设计了模糊控制器,通过控制横摆力矩来实现车辆稳定性的控制。对转向盘阶跃输入信号和正弦输入信号两种工况分别进行了仿真研究。通过分析仿真结果,该控制方法能有效地控制车辆横摆角速度和质心侧偏角,提高车辆转向时的稳定性,同时能有效的降低驾驶员的操纵负担。  相似文献   

15.
针对电动汽车的高速行驶稳定性问题,对四轮独立制动/驱动、四轮独立转向电动汽车进行了研究。提出了一种轮胎力优化分配控制算法,提高极限工况下车辆稳定性。首先,根据驾驶员的转向、制动/驱动输入,基于理想二自由度车辆模型算出横摆角速度、质心侧偏角的目标值,然后比较目标值与车辆实际值得出偏差,再根据目标值与实际值的偏差采用滑模控制计算出了所需的总横摆力矩、侧向力、纵向力。最后基于八自由度车辆模型,通过最优分配控制算法,计算出了每个车轮上需要施加的纵向力与侧向力。利用Matlab/Sinmulink与车辆动力学软件CarSim联合仿真验证了基于车辆稳定性的轮胎力优化分配效果。仿真结果表明,提出的轮胎力优化分配算法在高速急转向工况下能够使车辆保持理想的横摆角速度和质心侧偏角,提高了极限工况下车辆稳定性。  相似文献   

16.
为了提高四驱车辆的整车操纵稳定性,文章以某一现有车型为原型,通过理论建模法,在适当精简的基础上建立了包括横向运动、纵向运动、横摆运动和四个车轮的转动等在内的整车七自由度动力学模型。基于车辆转矩最优控制原理,通过PID控制算法对整车横摆角速度进行控制,使其能够较好的跟随理想横摆角速度变化,优化分配车轮所需转矩,并通过Matlab/Simulink仿真软件验证所优化分配的转矩的合理性、有效性,结果表明所设计的控制器及方法可以有效地改善四驱车辆的操纵稳定性。  相似文献   

17.
采用二自由度车辆动力学状态方程建立了车辆横摆角速度跟踪控制模型。用横摆角速度与其期望值的差值及其变化率作为模糊控制器的输入,设计了模糊自适应PID控制器。基于模糊自适应PID控制器,进行了前轮转向阶跃输入、正弦输入仿真试验。仿真和分析结果表明,设计的模糊PID控制器可实现对参考模型横摆角速度的跟踪,车辆的操纵稳定性得到了有效改善。  相似文献   

18.
四轮驱动电动汽车因每个车轮独立可控,在对车辆进行直接横摆力矩控制(Direct Yaw-moment Control,DYC)时需要根据车轮滑移率选择干预车轮而施加合适的控制转矩,而滑移率的获取有赖于精确的车速信息。设计了基于扩展卡尔曼滤波的车速估计算法,依据车轮滑移状态及车辆状态参数提出了直接横摆力矩控制策略及期望转矩与期望横摆力矩的计算方法。在CarSim与Simulink联合仿真环境下对所提出的车速估计算法及直接横摆力矩控制策略进行了离线仿真。仿真结果表明,车速估计算法能准确估计车速信息,绝对误差较小;直接横摆力矩控制策略能够根据横摆角速度的偏差,正确地选择干预车轮,及时地控制车轮转矩,从而保持车辆的横向稳定性。  相似文献   

19.
针对车辆质心侧偏角难以测量的问题,采用无迹卡尔曼滤波算法设计了质心侧偏角状态观测器,针对分布式电驱动汽车在加速转向工况下车轮驱动力的优化分配问题,提出一种具有分层结构的控制策略。上层控制策略,以提高控制器对参数不确定和模型误差的鲁棒性,基于滑模鲁棒控制计算期望的主动横摆力矩;下层控制策略,以提高车辆操纵稳定性及轮胎利用率,采用拉格朗日乘子法对轮胎力进行优化分配。在MATLAB/Simulink环境下进行仿真分析,仿真结果验证了该控制方法能够有效地提高车辆操纵稳定性和轮胎的利用率。  相似文献   

20.
针对车辆在轨迹跟踪过程中,尤其是高速转向等极限工况下,易出现车辆跟踪精度差和失稳的问题,以分布式驱动智能汽车为研究对象,提出一种考虑横向稳定性的轨迹跟踪协同控制策略。首先,建立车辆纵向、横向以及横摆运动的三自由度动力学模型,设计了基于模型预测控制的主动转向控制器,通过优化求解得到跟踪期望轨迹的最佳前轮转角。然后,采用滑模控制设计横摆力矩控制器,将横摆角速度和质心侧偏角作为联合变量,利用积分二自由度控制模型,计算车辆稳定的等效附加横摆力矩。最后,采用二次规划算法设计最优力矩分配控制器,以满足总的驱动力矩和附加横摆力矩的控制需求。仿真试验结果表明,控制系统在极限高速工况下,能够使车辆精确、稳定的跟踪期望轨迹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号