首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高铁酸钾去除水中磺胺甲噁唑,探讨了反应液pH、高铁酸钾投加量、反应时间对磺胺甲噁唑去除效果的影响。结果表明:高铁酸钾对磺胺甲噁唑具有很好的去除效果,当反应液pH值为7.0、高铁酸钾投加量为0.1 mmol/L时,0.02 mmol/L的磺胺甲噁唑经高铁酸钾氧化10 min后,其去除率达到91.5%;在试验条件范围内,随着高铁酸钾投加量的增加,磺胺甲噁唑的去除率提高;反应液pH对去除效果有显著影响,磺胺甲噁唑的反应速率及去除率在中性和弱酸性条件下明显高于碱性条件。同时,反应时间对去除效果的影响在不同pH条件下有着明显的不同。pH值7.0时,高铁酸钾氧化能力强但不稳定,反应速率快但持续时间短;pH值7.0时,高铁酸钾氧化能力降低但较为稳定,反应速率慢但持续时间长。  相似文献   

2.
利用纳米催化电解法处理磺胺甲噁唑废水,研究pH、盐度、电解电压、电解时间等因素对处理磺胺甲噁唑的影响。结果表明,对于浓度为80 mg/L的磺胺甲噁唑废水,最佳的电解条件是pH=13,盐度为15‰,电解电压为6 V。在此条件下,COD_(Mn)的去除率达到76%,磺胺甲噁唑的去除率为83%,说明纳米催化处理对此类难以生物降解的抗生素具有很好的去除效果,为该类废水的处理提供了一种可行的方法。  相似文献   

3.
UV-C辐照降解水中磺胺类药物   总被引:2,自引:0,他引:2  
采用C类紫外线或称为短波紫外线(即UV-C)辐照降解水中磺胺类药物,考察了磺胺类药物种类、UV光强、磺胺类药物初始浓度、反应液pH对降解效果的影响。结果表明UV-C辐照对磺胺嘧啶、磺胺甲基嘧啶和磺胺甲恶唑的降解过程均符合拟一级反应动力学。UV-C辐照技术对磺胺甲恶唑的去除率最高,在反应液pH为7,光强为142μW/cm^2,初始浓度为0.02mmol/L条件下,辐照30 min后磺胺甲恶唑去除率达到67.80%,而磺胺嘧啶和磺胺甲基嘧啶去除率仅15%左右。通过增大紫外光强和减小初始浓度,可提高反应速率和磺胺甲恶唑去除率。反应液pH对反应效果的影响显著,酸性条件更利于UV-C辐照降解磺胺甲恶唑。  相似文献   

4.
超声/Fenton法对废水中硝基苯的处理研究   总被引:1,自引:0,他引:1  
孙威  杨春维  汤茜 《辽宁化工》2012,41(12):1257-1259
实验采用超声/Fenton法处理难降解的有机污染物硝基苯.全面考察了溶液初始pH值、Fenton试剂组成、Fenton试剂加入量及反应温度等因素在US/Fenton试剂法对水中硝基苯去除效果的影响.当废水中硝基苯的浓度为100 mg/L,Fenton试剂投加量比为5:1,pH值为3,温度控制在25℃的条件下,硝基苯的降解率可达96.5%.  相似文献   

5.
《应用化工》2022,(4):624-629
针对普通工艺难以降解水中磺胺类抗生素现象,采用CoFe_2O_4/PMS工艺降解水中磺胺甲基嘧啶。磁性纳米铁酸钴(CoFe_2O_4)通过催化分解单过氧硫酸氢钾(PMS)产生具有强氧化性的硫酸自由基(·SO_4-)降解水中磺胺甲基嘧啶,探讨了溶液中CoFe_2O_4浓度、PMS浓度、温度、反应物初始浓度、pH、无机阴离子和腐植酸浓度等影响因素。结果表明,降解过程符合拟一级动力学模型。一定范围内,CoFe_2O_4、PMS浓度越高,降解速率越快;温度对降解效果影响较大;反应物初始浓度与降解速率呈负相关;pH=9时降解速率最快;一定浓度的HCO_3-)降解水中磺胺甲基嘧啶,探讨了溶液中CoFe_2O_4浓度、PMS浓度、温度、反应物初始浓度、pH、无机阴离子和腐植酸浓度等影响因素。结果表明,降解过程符合拟一级动力学模型。一定范围内,CoFe_2O_4、PMS浓度越高,降解速率越快;温度对降解效果影响较大;反应物初始浓度与降解速率呈负相关;pH=9时降解速率最快;一定浓度的HCO_3-促进磺胺甲基嘧啶的降解,Cl-则抑制其降解;腐植酸浓度越高,降解速率越慢。  相似文献   

6.
王建  陈芳 《上海化工》2012,37(3):1-3
以Y3+掺杂二氧化钛为光催化剂,以亚甲基蓝为模拟印染废水进行光催化降解实验,考察了催化剂用量、溶液初始pH值、溶液初始浓度、反应时问等因素对降解反应的影响,结果表明:当催化剂的用量为1。5g/L,亚甲基蓝洛液pH值为9.0、初始浓度为20mg/L,反应60rain后,其降解效果最佳。  相似文献   

7.
《应用化工》2022,(7):1746-1750
采用硫酸钠-过氧化氢-氯化钠加合物(SPS)固体类芬顿试剂降解苯胺,考察了SPS的用量、Fe(2+)的用量、初始pH、苯胺污染物浓度、温度及反应时间对苯胺降解率的影响。结果表明,最佳反应条件为温度30℃,初始pH为2,SPS投加量0.4 g,SPS与硫酸亚铁投加比例10∶1,氧化时间为30 min时,处理100 mL的50 mg/L苯胺废水,降解率可达到93.24%,SPS对芬顿体系的动力学更符合一级反应动力学。  相似文献   

8.
Fe_2O_3可见光光催化降解水中腐殖酸的研究   总被引:2,自引:0,他引:2  
采用均相沉淀法制备了Fe2O3光催化剂,并用XRD对其晶型进行了表征。研究了Fe2O3催化剂在可见光照射下对水中腐殖酸的降解行为,考察了催化剂用量、初始pH值、腐殖酸初始浓度等因素对光催化氧化过程的影响。结果表明,当Fe2O3用量为0.4 g/L,腐殖酸溶液的初始浓度为10 mg/L,pH为3.0,20 W黄色荧光灯(Em ax=548 nm)照射下反应150 m in,腐殖酸的降解率达到94.1%,说明所制备的Fe2O3光催化剂在可见光照射下对水中腐殖酸有较好的降解效果,并可多次重复使用。  相似文献   

9.
采用热和Fe2+共活化Oxone法深度氧化处理填埋污泥脱水液,分析了Oxone投加量、温度、pH值对有机物去除效果的影响。结果表明,该氧化体系对胡敏酸类物质具有较好的去除效果;COD降解符合准二级动力学模型,改变Oxone投加量和pH值会影响有机物基团的降解顺序。在污泥脱水液初始COD为(600±22)mg/L,温度为45℃,pH值为2,Oxone投加量为17.9 mmol/L,Oxone/Fe2+摩尔比为50时,COD去除率达到31.2%,最终出水COD为423 mg/L,达到《污水排入城镇下水道水质标准》(GB/T 31962—2015)的A级排放标准。  相似文献   

10.
采用UV/H_2O_2和UV/TiO_2两种工艺降解磺胺甲噁唑(SMX),确定了H_2O_2和TiO_2的最佳投加量,在保持最佳投加量的条件下研究了SMX初始浓度、反应溶液初始pH、叔丁醇投加量对两种方法降解SMX效果的影响,为研究两种方法在降解SMX过程中的矿化程度测定了TOC的去除情况。结果表明,两种方法都对SMX具有较好的去除效果,整体而言UV/H_2O_2对SMX的降解速率高于UV/TiO_2;UV/H_2O_2的降解速率更易受到SMX初始浓度、反应溶液初始pH的影响;UV/H_2O_2对SMX的降解过程中·OH的氧化作用和UV直接降解都是去除SMX的主要作用,而UV/TiO_2中UV直接降解和空穴直接氧化是去除SMX的主要作用。  相似文献   

11.
采用硫酸钠-过氧化氢-氯化钠加合物(SPS)固体类芬顿试剂降解苯胺,考察了SPS的用量、Fe~(2+)的用量、初始pH、苯胺污染物浓度、温度及反应时间对苯胺降解率的影响。结果表明,最佳反应条件为温度30℃,初始pH为2,SPS投加量0.4 g,SPS与硫酸亚铁投加比例10∶1,氧化时间为30 min时,处理100 mL的50 mg/L苯胺废水,降解率可达到93.24%,SPS对芬顿体系的动力学更符合一级反应动力学。  相似文献   

12.
采用低温等离子体降解水中染料活性蓝160,研究了放电功率、空气流量、溶液初始pH值、染料浓度对活性蓝160降解的影响,同时分析了其降解动力学。实验结果表明,放电功率为30 W、空气流量为56 L/h、初始pH为7.0、活性蓝160初始浓度为60 mg/L时,12 min时活性蓝160降解率最大(98.8%)。溶液初始pH为10.0时,反应动力学速率常数最大(0.94958 min~(-1))。一定范围内提高空气流量、放电功率、pH对活性蓝160的降解起促进作用,活性蓝160初始浓度对其降解率无明显影响。  相似文献   

13.
以BiFeO3和H2O2组成非均相类Fenton体系催化降解酸性复红(acidic fuchsin)染料废水.探讨了过氧化氢用量、反应时间、反应温度、催化剂用量、染料初始浓度以及pH值等因素的影响.实验结果显示在过氧化氢体积百分数为0.65%、反应时间为50 min、反应温度为303 K、催化剂用量为0.45 g/L、酸性复红溶液初始浓度为120 mg/L和pH值为7.5的最优条件下,废水脱色率>99%.降解过程动力学的初步研究说明该过程符合一级动力学方程,在303 K时表观速率常数和表观活化能分别为0.1011 min-1、23.04 kJ/mol.  相似文献   

14.
采用单过硫酸氢钾复合粉(Oxone)作为氧化剂,对甲氧苄啶(TMP)进行氧化降解试验。研究了Oxone去除TMP的降解机制和主要作用的活性物种,考察了Oxone浓度、pH值、温度对TMP降解效果的影响,并对降解反应过程中的消毒副产物进行测定。试验结果表明,Oxone溶于水后,PMS与Cl~-发生非自由基反应生成活性氯(Cl_2和HOCl),活性氯作为主要活性物种降解TMP。降解过程符合拟一级反应动力学模型,反应动力学常数为9.15×10~(-2)min~(-1)(R~20.99);随着Oxone的投加量增加,反应速率常数k_(obs)增大;初始pH值在5.1~9.2,随着pH增大,TMP的去除率先减小后增大,中性条件下去除率较小,但仍可达62.4%;温度在15~55℃,温度越高,反应速率常数越大。根据阿伦尼乌斯方程,得到TMP的反应活化能E_a为34.12 kJ/mol;Oxone降解TMP过程中产生的DBPs主要是CHCl_3,反应开始时的生成量最高并随着时间逐渐减小。  相似文献   

15.
采用Fe2+活化过硫酸钠降解脱色罗丹明B溶液,考察了Fe2+初始浓度对罗丹明B溶液脱色率的影响及其反应过程中pH的变化。实验结果表明:Fe2+初始浓度活化过硫酸钠降解脱色罗丹明B溶液最佳值为400 mg/L,反应60 min内pH随反应下降。罗丹明B初始浓度为10 mg/L,初始pH为3,投加过硫酸钠初始浓度为400 mg/L,Fe2+初始浓度为400 mg/L时,反应60 min,罗丹明B溶液脱色率达95.7%。其反应过程遵循一级动力学规律,反应途径可分为脱乙基反应、脱色反应、开环反应。  相似文献   

16.
针对普通工艺难以降解水中磺胺类抗生素现象,采用CoFe_2O_4/PMS工艺降解水中磺胺甲基嘧啶。磁性纳米铁酸钴(CoFe_2O_4)通过催化分解单过氧硫酸氢钾(PMS)产生具有强氧化性的硫酸自由基(·SO_4~-)降解水中磺胺甲基嘧啶,探讨了溶液中CoFe_2O_4浓度、PMS浓度、温度、反应物初始浓度、pH、无机阴离子和腐植酸浓度等影响因素。结果表明,降解过程符合拟一级动力学模型。一定范围内,CoFe_2O_4、PMS浓度越高,降解速率越快;温度对降解效果影响较大;反应物初始浓度与降解速率呈负相关;pH=9时降解速率最快;一定浓度的HCO_3~-促进磺胺甲基嘧啶的降解,Cl-则抑制其降解;腐植酸浓度越高,降解速率越慢。  相似文献   

17.
研究了芬顿法对水中偶氮染料茜素红氧化降解过程。考察了溶液的pH值、不同H_2O_2/Fe~(2+)摩尔比、H_2O_2/Fe~(2+)投加量、染料初始浓度对茜素红降解效果的影响。结果表明:茜素红初始浓度为20 mg/L,在pH值为3、H_2O_2和Fe~(2+)投加量分别为0.5 mmol/L和0.1 mmol/L的最佳条件下,反应30 min后茜素红的降解率达到最大值65.48%。Cl~-对茜素红在芬顿体系中的降解表现明显的抑制作用,SO_4~(2-)和NO_3~-的存在降低了芬顿试剂的氧化性能,也阻碍了茜素红的降解。  相似文献   

18.
张一兵  汪华丽  谈军 《硅酸盐通报》2011,30(6):1459-1463
采用水热法制备了锐钛矿型铁掺杂TiO2光催化剂,以分析初始浓度、催化剂用量、TiO2的掺铁量、溶液的pH值对光催化速率的影响为基础,研究了铁掺杂二氧化钛催化硝基苯动力学行为.结果表明:可见光照射下,硝基苯溶液初始浓度为50 mg/L、TiO2掺铁量为0.05%(物质的量分数)、催化剂用量为1.2 g/L,溶液pH为3、室温下光照反应2.5h,硝基苯的降解率和反应速率常数k达到最大值.光催化反应符合Langmuir-Hinshelwood动力学规律,硝基苯的降解过程表现为一级反应,k为0.0028 min-1.  相似文献   

19.
王亮 《山西化工》2010,30(2):55-58
研究了Fenton试剂的用量、pH值、光照时间对UV/Fenton试剂降解黑索今(RDX)废水效果的影响。结果表明,UV/Fenton试剂对RDX废水有较好的降解作用,在60 W紫外灯照射下,RDX废水初始质量浓度为180 mg/L、pH值为3、10%双氧水用量为1.20 mL、10%FeSO4溶液[(n(Fe-SO4)∶n(H2O2)=1∶10)]用量为0.12 mL、光照时间为60 m in时,RDX去除率达到95%,CODC r去除率为82%。  相似文献   

20.
超声协同TiO_2光催化降解酸性大红染料的研究   总被引:1,自引:0,他引:1  
李蕊  赵景联  孙亚萍 《应用化工》2006,35(6):416-419
选取酸性大红染料为降解目标物,研究了在二氧化钛催化剂存在下的光催化氧化法与超声作用的协同反应,重点考察了超声辐射功率、初始溶液pH值、染料初始浓度、催化剂用量以及Fe3+等的添加对降解效率的影响。实验结果表明,溶液pH值为1.0,超声辐射功率400 W,染料初始浓度为40 mg/L,催化剂浓度为4 g/L,对酸性大红染料溶液降解75 m in,降解率可达90%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号