首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
声学黑洞(Acoustic Black Holes,ABH)以结构厚度的幂律变化实现弹性波的汇聚,结合阻尼层能较好地抑制结构振动。为进一步实现结构的低频振动控制,将声学黑洞与约束阻尼复合,建立附加约束阻尼的二维声学黑洞薄板模型,采用数值方法计算加速度响应与结构损耗因子,研究二维声学黑洞板附加约束阻尼后的减振特性,并通过二维声学黑洞薄板振动试验开展验证,最后探究约束层材料、厚度及约束阻尼半径对声学黑洞板低频减振性能的影响规律。结果表明:相比于附加自由阻尼,约束阻尼使声学黑洞薄板在第一阶共振峰处的加速度导纳降低12.61 dB;当约束层厚度为截断厚度的2倍左右时,薄板整体可以达到较佳的减振效果。研究可为声学黑洞薄板结构的低频减振应用提供重要参考。  相似文献   

2.
作为一种被动型波操控结构,声学黑洞能对弯曲波起到较好聚集作用,再结合阻尼层能更好抑制结构振动波的传播。从声子晶体角度通过周期性排列构造一种声学黑洞结构与基体结合的一维声子晶体结构,选取合适的晶胞,采用有限元法对周期排列的声学黑洞结构弯曲波带隙特性进行研究,对比分析8周期声子晶体梁与等长度的恒定截面梁及周期楔形梁的振动位移传递函数,讨论黑洞区域材料变化对带隙的影响。结果表明:该声学黑洞结构具有较好弯曲波带隙,在对应带隙及附近频带区间振动位移响应出现较大衰减,表明其抑制振动效果明显;在黑洞区域选择合适的材料可以使带隙向低频移动,同时使得带隙区间增多。  相似文献   

3.
万志威  朱翔  李天匀  李敬 《振动与冲击》2022,(9):113-119+135
针对声学黑洞梁结构,引入压电分流阻尼形成声学黑洞压电复合结构,采用半解析法对其振动特性进行分析。首先基于哈密顿原理,采用墨西哥帽状小波作为型函数,利用能量法对声学黑洞悬臂梁的自由振动和受迫振动进行求解,与有限元法结果吻合良好,验证了半解析法的可靠性。然后引入分流阻尼,通过等效介质法将分流阻尼等效为附加材料,利用其局域共振机制,分析了含分流阻尼的声学黑洞梁振动特性,从理论上分析了确定局域共振频率近似方法。压电分流阻尼可以通过调整电感值来使局域共振与结构共振产生耦合,从而使振动响应峰值产生衰减;另一方面适当的阻尼可以使振荡效应消失。针对第一阶共振峰值,设计出的含分流阻尼的声学黑洞梁比传统阻尼层声学黑洞梁的振动有明显衰减,为声学黑洞结构的低频振动控制提供了新的思路。  相似文献   

4.
声学黑洞结构是一种可实现板内弯曲波操控和振动能量汇聚的新结构,在振动和噪声控制领域具有应用 前景,因此对内嵌于板结构的二维声学黑洞及其阵列的动力学特性和设计方法进行研究十分必要。首先给出描述声 学黑洞汇集效果的定量参数,然后通过正交试验得出内嵌于板结构的单二维声学黑洞几何参数在一定范围内的最优 值;最后,基于这些参数设计声学黑洞并组成包含两声学黑洞的阵列,在频域内研究板结构具有不同排布方式声学黑 洞阵列时的能量汇集效应。结果表明,在一定频带范围内两个声学黑洞组成的阵列的能量汇聚效应比单声学黑洞更 为明显,且横向排列的声学黑洞阵列结构具有更好的能量汇聚效果。对于声学黑洞阵列和阻尼减振的设计具有一定 参考价值。  相似文献   

5.
声学黑洞结构是一种可实现板内弯曲波操控和振动能量汇聚的新结构,在振动和噪声控制领域具有应用 前景,因此对内嵌于板结构的二维声学黑洞及其阵列的动力学特性和设计方法进行研究十分必要。首先给出描述声 学黑洞汇集效果的定量参数,然后通过正交试验得出内嵌于板结构的单二维声学黑洞几何参数在一定范围内的最优 值;最后,基于这些参数设计声学黑洞并组成包含两声学黑洞的阵列,在频域内研究板结构具有不同排布方式声学黑 洞阵列时的能量汇集效应。结果表明,在一定频带范围内两个声学黑洞组成的阵列的能量汇聚效应比单声学黑洞更 为明显,且横向排列的声学黑洞阵列结构具有更好的能量汇聚效果。对于声学黑洞阵列和阻尼减振的设计具有一定 参考价值。  相似文献   

6.
对敷设自由阻尼薄板振动响应进行了分析,以复刚度为基础得到了在Kirchhoff理论下复合薄板振动控制方程。基于波函数法理论,推导了自由阻尼薄板振动分析模型以及包含自由阻尼结构与声腔的三维耦合模型的建模方法;以四边固支自由阻尼矩形板及耦合的结构声学系统为例,分别以波函数法与有限元法计算了其50~500 Hz频段内的结构与声学响应。结果表明:波函数法能有效的应用于添加自由阻尼的薄板振动以及结构声耦合系统响应的预测与分析;相比于有限元法,其高精度、高收敛率的特点使波函数能有效解决更高频率的声振问题。  相似文献   

7.
敷设声学覆盖层的板架结构抗冲击性能数值计算研究   总被引:3,自引:0,他引:3  
为提高潜艇的隐身性能,通常在潜艇非耐压壳板外表面敷设消声瓦,在耐压壳体的外表面敷设隔声去耦瓦,在耐压壳体内表面敷设"阻尼层"(以上三种结构统称为多种声学覆盖层);由于声学覆盖层含有空腔的特殊结构形式,该空腔结构形式在受到爆炸冲击波时,腔体将产生变形并吸收能量,这将严重影响潜艇的抗冲击性能。因此,针对敷设声学覆盖层的板架结构的吸能性能进行研究,找出了覆盖层空腔结构变形、速度及加速度与冲击波能量吸收之间的关系,得到敷设声学覆盖层板架结构的抗冲性能;并对声学覆盖层结构进行优化,在此基础上,给出兼具抗冲和隔振功能的声学覆盖层结构设计及性能参数的优化建议。  相似文献   

8.
条形阻尼敷设方式对薄板声辐射特性影响的讨论   总被引:1,自引:0,他引:1       下载免费PDF全文
陈源  陈浩杰  田丰 《声学技术》2013,32(5):411-415
薄板敷设条形阻尼结构抑制结构振动已有一定的研究基础,其中包括阻尼材料、阻尼的结构尺寸以及基于声子晶体理论的周期条形阻尼结构等对抑制结构振动的作用。但是,目前针对周期性阻尼结构的研究多数集中在多周期平行条形阻尼结构,而对于条形阻尼左右交替偏斜的敷设方式,尚未有明确的提出与运用。本文针对条形阻尼的交替偏斜敷设方式抑制薄板声辐射特性进行了相关研究,证明了与传统条形阻尼平行敷设方式相比,条形阻尼交替偏斜敷设方式能更好地降低薄板声辐射,且其结构中相邻条形阻尼结构存在最优的敷设夹角。  相似文献   

9.
宋婷婷  郑玲  邓杰 《振动与冲击》2022,(10):186-195
声学黑洞(acoustic black hole,ABH)效应是遵循幂变规律对梁或薄板结构的厚度进行剪裁,使弯曲波在结构尖端波速降至为零而无法发生反射的现象,从而能够在结构末端实现能量的聚集与高效回收。针对单一声学黑洞结构在实现峰值回收时对外界激励频率敏感的问题,提出基于周期声学黑洞的宽频压电能量回收系统。首先,基于高斯展开法,建立了耦合压电层的声学黑洞压电俘能半解析模型,并在频域范围内结合能带理论分析了周期数、幂指数、中心截断厚度以及黑洞半径对能量回收特性的影响;最后,通过压电能量回收试验,验证了周期声学黑洞对于实现宽频能量回收的有效性。研究结果表明:声学黑洞的各结构参数会通过影响峰值个数、峰值区间长度以及能带结构等因素,对系统的输出功率以及采集效率产生影响。分析结果对实现周期声学黑洞梁的宽频能量回收优化设计具有重要的参考价值。  相似文献   

10.
基于声学黑洞(acoustic black hole, ABH)弧形梁体积小且模态频率丰富的特点,将声学黑洞弧形梁作为附加结构周期分布在直梁上,达到促进局域共振效应和拓宽低频带隙的作用,由此构建一种新的局域共振型声学超材料。针对局域共振型超材料,采用高斯展开法,建立其半解析理论分析模型,基于零空间法处理其内部连接以及周期边界条件,并通过有限元法验证半解析理论分析模型的准确性。分析和计算其能带结构,研究结构参数以及ABH效应对布拉格带隙以及局域共振带隙的影响机理。研究结果表明,该半解析理论模型能够对结构的带隙进行有效计算,附加弧形ABH的陷波机制能够促进结构的局域共振效应并对主梁进行有效减振,为声学黑洞声学超材料的应用提供了新的思路。  相似文献   

11.
敷设二维周期块状阻尼结构的薄板声辐射数值计算   总被引:1,自引:0,他引:1  
本文借助有限元和边界元的数值算法,针对特定的薄板结构,探讨敷设二维周期块状阻尼结构对薄板声辐射特性的影响。数值计算结果表明,在特定频段内,敷设二维周期块状阻尼结构的薄板辐射声能量要小于敷设传统等面积的整块自由阻尼结构。同时,适当增加阻尼敷设面积及块状阻尼的结构周期数能有效降低薄板声辐射。  相似文献   

12.
轨道交通引起的环境振动噪声问题持续增加,即使目前具有多种控制效果良好的减振降噪措施,但仍有望做进一步的提升。在该研究中提出了一种新型的槽型轨道动力吸振器,将声学黑洞波动控制技术与动力吸振原理相结合。该吸振器设计的目标是保证主结构强度与刚度的前提下,采用附加的声学黑洞阻尼振子作为吸能单元,对主结构的振动能量进行传递、吸收与耗散。为了研究声学黑洞型动力吸振器对槽型轨道振动特性和声辐射特性的影响,利用仿真分析对不同类型的动力吸振器下槽型轨道的位移导纳和振动衰减率进行了评估;采用滚动噪声预测模型计算分析了声学黑洞型动力吸振器的降噪效果并探究了其参数对轮轨振动噪声的影响规律。结果表明:槽型轨在800~1 000 Hz频段内的一阶pinned-pinned在未采取措施的情况下振动响应显著,振动衰减率仅为0.68 dB/m,在安装了声学黑洞型动力吸振器之后轨道结构的振动衰减率上升到1.80 dB/m,提高率可达265%。  相似文献   

13.
声学黑洞(Acoustic Black Hole,ABH)能够实现声波的聚集,通过粘贴阻尼层将其聚集的能量耗散,可有效降低声学黑洞复合结构的振动和声波的传递。针对中低频段噪声,设计了声学黑洞复合隔声结构,建立了其隔声量计算模型。研究了声学黑洞复合隔声结构的黑洞数量、黏弹性阻尼层、声学黑洞半径等参数对隔声性能的影响。研究结果表明:在160~1 000 Hz频率范围内,ABH能明显增加复合隔声结构的隔声性能,其传递损失在1/3倍频程内增加了1.9 dB。文中的研究结果为复合隔声结构的设计提供了借鉴。  相似文献   

14.
在水池中进行敷设手性声学覆盖层的加筋板结构水下声辐射实验,对手性结构覆盖层的声辐射抑制特性进行测试和分析。将试验结果与实心橡胶进行对比,并对手性声学覆盖层的抑声机理进行分析,提出在手性声学覆盖层的核中填充EPS泡沫和在表面敷设铝板两种方法可以增加阻尼、抑制覆盖层声辐射面的振动。结果表明,EPS泡沫可增强手性多孔覆盖层的阻尼效应,改善手性多孔覆盖层的低频声辐射性能。  相似文献   

15.
针对夹层约束阻尼梁结构的减振特性进行深入研究,在其基础上扩展多处敷设增设支撑层的约束阻尼,建立了多点铺设增设支撑层约束阻尼梁的振动特性模型,利用粘弹性材料的Maxwell模型、假设模态法、有限元理论和力学原理,结合功能特性方程和Lagrange方程,导出了增设支撑层约束阻尼梁的振动位移响应方程。通过对敷设双支撑约束阻尼简支梁在支撑层厚度变化的参数研究,可以看到增设适当厚度的支撑层能够达到更好的减振效果。  相似文献   

16.
在直升机飞行过程中,旋翼、尾桨等噪声源在舱室内产生强烈的低频噪声,严重影响直升机的驾乘舒适性,长时间的噪声暴露会危及驾驶安全。直升机舱室常用的夹层壁板结构可有效隔绝中、高频噪声,但其低频隔声性能一般较弱。为有效降低直升机舱室内低频噪声,将局域共振型声学超材料与舱室夹层壁板结合,建立直升机舱室声学超材料壁板模型,采用有限元法分析平面波入射激励下声学超材料壁板的低频隔声性能,并探索局域振子质量、层间结构对隔声性能的影响规律。结果表明:相比敷设阻尼材料、布置动力吸振器等传统舱内降噪方法,声学超材料壁板能有效隔离低频噪声,形成380 Hz~620 Hz的宽低频带隙。增加局域振子质量可有效拓宽带隙宽度并增强带隙内声透射损失,增加纵向加强筋数目可增强结构整体刚度,使振动衰减。声学超材料内饰的引入可为解决直升机舱室低频噪声问题提供技术路线。  相似文献   

17.
在水下结构表面敷设隔声去耦材料是应用最广泛也是非常有效的一种提高舰船隐身性能的方法。基于统计能量法开展了隔声瓦对复杂锥柱结构水下振动的影响研究,讨论了隔声瓦敷设方式对复杂锥柱结构水下振动的影响,分析了阻尼损失系数对隔声瓦减振效果的影响。研究表明,隔声瓦敷设方式、阻尼损失系数对隔声瓦减振效果有较大影响:当隔声瓦敷设在结构振动主导传递途径上时,其对传递途径下游结构的振动抑制效果较为明显,而对于振源及传递途径上游结构振动的影响较小;隔声瓦减振效果随敷设密度的增大而增加,随阻尼损失系数的增大而有所降低。  相似文献   

18.
部分敷设阻尼材料的水下结构声辐射分析   总被引:3,自引:2,他引:1       下载免费PDF全文
基于统计能量分析(SEA)方法,分析了流场中部分敷设阻尼材料的有限长圆柱壳的声辐射特性,并进行了相应的声辐射试验测试。通过仿真结果与试验对比,验证了SEA方法在计算敷设阻尼结构的圆柱壳声辐射特性问题的有效性。在此基础上开展了部分敷设阻尼材料的水下结构辐射问题研究,分析了阻尼层敷设比例对水下结构振动与声辐射的影响;讨论了结构损耗因子对阻尼层减振降噪效果的影响。研究表明结构损耗因子对局部敷设于水下结构的阻尼层降噪效果有很大影响,本研究旨在为潜艇声学优化设计提供参考。  相似文献   

19.
基于试验模态分析,考察船用加强筋板架模型在不同敷设位置,全部进行约束阻尼等处理方式对系统动态特性的影响。试验结果表明:(1)板架表面进行约束阻尼处理后,在不同测点位置,结构表面振动均有不同程度的衰减;(2)阻尼减振作用与激励源传播距离有关,在激励点位置,阻尼减振效果不佳;(3)阻尼减振效果与激励方式、阻尼敷设位置均有一定关系,局部阻尼处理在特定情况下可达到与全部阻尼处理相当的减振效果。  相似文献   

20.
采用有限元/边界元方法对声呐平台结构振动声辐射进行了理论研究。首先根据声学材料不同的减振降噪机理对其进行了合理的等效处理和简化建模,然后计算了声呐平台敷设不同阻尼和吸声特性声学材料的振动与声辐射特性。研究表明:声学材料的阻尼性能可以通过复合损耗因子等效,吸声性能可以通过设置边界特性阻抗来近似实现;声呐平台结构敷设阻尼和吸声材料有利于减小平台振动和降低自噪声;声学材料的吸声系数越大越有利于降低声呐平台自噪声,这对声呐平台自噪声预报和控制提供了重要的理论指导和参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号