首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
研究了机械球磨La1.8Ca0.2Mg14Ni3+x%Ti(质量分数,下同)(x=0,5,10)合金的微结构和储氢性能。气态吸放氢研究表明。加入钛粉球磨能有效提高合金的活化性能、储氢容量和吸放氢速率。铸态合金经过6次活化后,在613K时放氢量为4.12%(质量分数,下同)。加Ti球磨改性10h后,随着X增加,合金经过2次~3次循环基本完全活化。吸放氢性能也相应提高。Ti含量在x=0,5,10时合金在613K的放氢量分别为4.69%,4.80%,4.83%:当x=10时合金在373K的吸氢量达到3%以上,在600K经过2min就能达到4.81%(为最大吸氢量的97%)。微结构分析表明。具有表面催化活性的Ti粉与合金基体表面进行复合,并使合金发生部分非晶转变,能有效改善La1.8Ca0.2Mg14Ni3合金的储氢性能。  相似文献   

2.
机械合金化La-Mg-Ni系三元储氢合金的性能   总被引:4,自引:0,他引:4  
采用机械合金化制备了La-Mg-Ni系三元储氢材料,并对其热力学、动力学进行了研究,该材料具有很好的活性和较高的储氢量,在553K时储氢量达到5.23%(质量百分数)。在3.0MPa氢气压力和423K~573K之间的条件下,可以在1min之内完成饱和吸氢量的90%以上。采用XRD衍射、SEM对材料的物相和形貌进行分析和研究。实验证明:物相组成为La2Mg17,Mg2Ni,LaH2和单质La,颗粒的最大粒径为4μm。混合粉末材料的非晶化和体系中催化物质的存在使其氢化动力学性能得以明显改善。  相似文献   

3.
利用高频熔炼方法制备了La1+xMg2-xNi9(x=0,0.5,1.0,1.5)系列合金,并对其进行了XRD分析和储氢容量及电化学性能测定。结果表明:随着La含量增大,合金中LaNi5和(La,Mg)Ni3相转变为LaNi3相,且Mg2Ni相出现,晶胞体积也增大,合金的储氢容量和电化学性能提高;当x=1.5时,Mg2Ni相消失,合金的储氢性能有所下降。当x=1.0时,即La2MgNi9合金具有较好的储氢容量及电化学容量。  相似文献   

4.
银和铝对Mg2Ni合金储氢性能的影响   总被引:4,自引:0,他引:4  
用氢化燃烧法合成Mg2-xAgxNi(x=0.05,0.1,0.2,0.5)和Mg1-xAlxNi(x=0,0.1,0.2,0.5)。PCT结果说明合成的Mg-Ni—Ag和Mg—Ni—Al储氢合金材料具有很高的活性和理想的储氢性能。对两个体系的PCT结果分别进行计算,得出温度和氢平衡压的关系式。在423K时Mg1.8Ag0.2Ni在5min之内的放氢量为2.14%/min(质量分数);Mg1.5Al0.5Ni在α β相区的吸氢速率为4.88%/min(质量分数),放氢速率为1.26%/min(质量分数)。用XRD方法进行物相分析表明:添加少量银没有改变Mg2Ni的结构;添加铝却改变了Mg2Ni的结构,使储氢合金材料的储放氢动力学性能均得到改善。  相似文献   

5.
采用磁场辅助烧结合成法(MASS)制备了化学计量比为La0.67Mg0.33Ni3的储氢合金,通过X射线衍射(XRD)、等温定容法(PCT)和差示扫描量热法(DSC)分析了合金的相结构和吸放氢性能。XRD结果显示:合金主相为PuNi3型结构的(La, Mg)Ni3,氢化后分解为以La2Ni7、MgNi2和LaNi3结构为主的复相产物,合金因吸氢发生晶格膨胀。PCT测试表明:1 T磁场下合成的合金在室温下具有最小的滞后系数(0.480)、最大的放氢量1.307(质量分数,%),综合性能最优。该合金放氢DSC曲线上有2个交叠的吸热峰,分别对应于(La, Mg)Ni3和LaNi5氢化后的放氢过程。  相似文献   

6.
热蒸发法制备Mg和Mg-Ni薄膜及其氢化性能   总被引:4,自引:0,他引:4  
采用热蒸发法制备了纯Mg膜及Mg78Ni22合金膜,研究了薄膜的结构及其氢化性能.Mg膜具有典型的柱状晶结构,择优取向生长趋势明显;Mg78Ni22薄膜由纳米晶Mg2Ni,Mg及少量非晶组成,Mg2Ni相沿着平行于薄膜表面的(001)方向择优生长.纯Mg膜的吸放氢温度分别为593和653K,其吸氢过程遵循形核长大机制.Mg78Ni22薄膜的压力一组成等温曲线存在低压和高压两个平台区,分别对应Mg和Mg2Ni的氢化反应,薄膜内Mg的吸放氢温度可分别降至473和503K,薄膜的最大吸氢量(质量分数)达到5.7%.Mg的氢化性能改善与薄膜中纳米晶Mg2Ni和非晶相起到的催化作用有关.  相似文献   

7.
采用熔盐保护熔炼法(SMPMS)成功制备了La2Mg17储氢合金.SEM和EDS研究发现,熔炼时液相在凝固过程中形成微观成分不均匀的非平衡组织.通过PCT性能测试发现,合金在523~623 K时可逆吸放氢量大于4.3%(质量分数, 下同).动力学分析结果表明,合金在473~623 K时具备良好的氢化动力学性能,并且在523 K时出现氢化速率极大值(25 s内吸氢3.2%).丰富的表面裂纹改善了合金的储放氢性能.  相似文献   

8.
采用感应熔炼法制备了Mg2Ni1-xZrx(x=0、0.2、0.4)合金,研究了Zr的添加对Mg系储氢合金储氢性能的影响。对合金的成分和微观组织进行分析,结果表明,Zr较难融入到合金,但是Zr能使得合金晶粒得到细化,且合金中都有Mg2Ni相的形成,有利于吸氢反应的进行。利用PCT测试仪测定了合金的储氢性能,结果表明:添加Zr元素的添加能有效降低Mg2Ni的吸放氢温度,并能有效提高提高合金的吸氢量,最高吸氢量达到4.91wt%。  相似文献   

9.
采用磁场辅助烧结合成法(MASS)制备了化学计量比为La0.67Mg0.33Ni3的储氢合金,通过X射线衍射(XRD)、等温定容法(PCT)和差示扫描量热法(DSC)分析了合金的相结构和吸放氢性能。XRD结果显示:合金主相为PuNi3型结构的(La,Mg)Ni3,氢化后分解为以La2Ni7、MgNi2和LaNi3结构为主的复相产物,合金因吸氢发生晶格膨胀。PCT测试表明:1T磁场下合成的合金在室温下具有最小的滞后系数(0.480)、最大的放氢量1.307(质量分数,%),综合性能最优。该合金放氢DSC曲线上有2个交叠的吸热峰,分别对应于(La,Mg)Ni3和LaNi5氢化后的放氢过程。  相似文献   

10.
HCS+MM法制备镁基复合储氢材料结构及储氢性能   总被引:1,自引:0,他引:1  
采用氢化燃烧合成法制备Mg95Ni5-x%TiFe0.8Mn0.2Zr0.05(x=0, 10, 20, 30)(质量分数)复合物,然后将氢化燃烧合成产物进行机械球磨得到镁基复合储氢材料。采用XRD、SEM、EDS及PCT研究材料的相结构、表面形貌、颗粒化学成分以及吸放氢性能。研究表明,添加30% TiFe0.8Mn0.2Zr0.05合金形成的复合物具有最佳的综合吸放氢性能:在373 K,50 s内基本达到饱和吸氢量4.11% (质量分数);在493和523 K,1800 s内放氢量分别为1.91%和4.3%;其起始放氢温度为420 K,与Mg95Ni5相比降低了20 K,吸放氢性能的改善与复合物的组织结构密切相关。此外,TiFe0.8Mn0.2Zr0.05的加入改善了复合物的放氢动力学性能  相似文献   

11.
分别通过物理法和化学法制备石墨烯载镍催化剂(Ni/Graphene),并采用球磨预处理或超声分散的方式与镁粉混匀,结合氢化燃烧合成和机械球磨复合技术制备镁-镍/石墨烯(Mg-Ni/Graphene)复合物储氢材料。采用X射线衍射仪、扫描电镜及气体反应控制器研究了材料的相组成、微观形貌和吸放氢性能。比较发现,添加化学法制备的Ni/Graphene并采用球磨预处理的Mg-Ni/Graphene复合物具有最佳的吸放氢性能,复合物的起始放氢温度降低,放氢速率加快。其在373 K温度下,100 s内就基本能达到饱和吸氢量6.21%(质量分数);553 K,1800 s内完全放氢,且放氢量达到6.05%。球磨预处理使得Ni/Graphene更均匀的与Mg接触,利于发挥Ni的催化作用和石墨烯优异的导电导热性。化学法制备的Ni/Graphene原位还原出纳米晶Ni,有利于形成纳米级Mg2NiH4晶粒,促进复合物储氢性能的改善。  相似文献   

12.
采用化学法制备多壁碳纳米管载镍催化剂(Ni/MWNTs),并将其加入到镁粉中,结合氢化燃烧合成(HydridingCombustionSynthesis,HCS)和机械球磨(MechanicalMilling,MM),即HCS+MM复合技术制备Mg85-Nix/MWNTs15-x(x代表质量百分数,x=3,6,9,12)合金。通过X射线衍射仪、透射电子显微镜、扫描电镜以及气体反应控制器研究了材料的晶体结构、微观形貌和吸放氢性能。结果表明:Mg85-Ni9/MWNTs6合金具有最佳综合吸放氢性能,其在373K,吸氢量达到5.68%(质量分数,下同),且在100s内就基本达到饱和吸氢量;在523K,1800s内的放氢量达到4.31%。Ni/MWNTs催化剂的添加,不但起到催化的作用,而且MWNTs具有优异的纳米限制作用,使得催化剂的粒径限制在纳米级,有利于限制产物中Mg2NiH4颗粒的长大。另外Ni与MWNTs存在协同催化作用,当它们达到一定比例时,对合金的吸放氢促进作用达到最优化,明显改善了合金的吸放氢性能。  相似文献   

13.
Eighteen as-cast binary Mg–Ni, Mg–Mm and ternary Mg–Ni–Mm and Mg–Ni–TM (TM=transition metals (Cu, Zn, Mn and Co); Mm = mischmetal containing Ce, La, Nd and Pr) alloys were hydrided by an electrochemical process to determine the alloys with the most potential for electrochemical hydrogen storage. The alloys were hydrided in a 6 mol/L KOH solution at 80 °C for 480 min and at 100 A/m2. To assess the electrochemical hydriding performance of alloys, maximum hydrogen concentrations, hydrogen penetration depths and total mass of absorbed hydrogen in the alloys were measured by glow discharge spectrometry. In addition, the structures and phase compositions of the alloys both before and after hydriding were studied by optical and scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. It was determined that the highest total amount of hydrogen was absorbed by the Mg–25Ni–12Mm and Mg–26Ni (mass fraction, %) alloys. The maximum hydrogen concentrations in the Mg–25Ni–12Mm and Mg–26Ni alloys were 1.0% and 1.6%, respectively. The main hydriding product was the binary MgH2 hydride, and the ternary Mg2NiH4 hydride was also detected in the Mg–25Ni–12Mm alloy. The electrochemical hydriding parameters achieved are discussed in relation to the structures of alloys, alloying elements and hydriding mechanisms.  相似文献   

14.
研究了Mg50 Ni50 -xTix 合金的非晶形成能力与非晶合金电极的吸放氢性能。结果表明 :在Mg50 Ni50 -xTix合金中 ,当Ti替代Ni元素的量低于 1 5% (摩尔分数 )时 ,机械合金化能够得到几乎单一的非晶态合金 ;用Ti替代Ni形成的三元非晶合金能降低镁镍合金的平衡氢压 ;少量的Ti替代能改善合金的电化学吸放氢容量 ,使合金电极的吸放氢循环稳定性得到提高。这被认为是在三元合金中钛元素减缓了合金中镁元素的氧化腐蚀进程所致。  相似文献   

15.
氢化燃烧法合成Mg2Ni的贮氢性能   总被引:2,自引:0,他引:2  
用氢化燃烧法合成了Mg2 Ni,PCT实验结果说明了合成的镁基贮氢合金具有很高的活性和高贮氢量 ,5 5 3K时达到 3.40 %。对Mg Ni系的PCT结果作了处理 ,得出温度和氢平衡压的关系式 :吸氢时lg(p/ 0 .1MPa)=- 34 6 9/T 6 .6 39;放氢时lg(p/ 0 .1MPa) =- 35 5 8/T 6 .6 12。用XRD方法进行了物相分析 ,表明存在在Mg2 Ni的氢化物  相似文献   

16.
本文综述了熔炼法、机械合金化法、烧结法、扩散法、氢化燃烧合成法、表面处理法等制备Mg2Ni合金的基本原理和主要工艺。介绍了扩散法和球磨法等制备技术的联用,总结并讨论了这些合金制备技术制取的合金的充放氢性能和电化学性能及其对合金性能的影响。较先进的机械合金化法制备Mg2Ni系贮氢合金复合材料是比较理想的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号