首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jeon JS  Lee S  An G 《Molecules and cells》2008,26(5):474-480
OsMADS1 is a rice MADS box gene necessary for floral development. To identify the key cis-regulatory regions for its expression, we utilized transgenic rice plants expressing GUS fusion constructs. Histochemical analysis revealed that the 5.7-kb OsMADS1 intragenic sequences, encompassing exon 1, intron 1, and a part of exon 2, together with the 1.9-kb 5' upstream promoter region, are required for the GUS expression pattern that coincides with flower-preferential expression of OsMADS1. In contrast, the 5' upstream promoter sequence lacking this intragenic region caused ectopic expression of the reporter gene in both vegetative and reproductive tissues. Notably, incorporation of the intragenic region into the CaMV35S promoter directed the GUS expression pattern similar to that of the endogenous spatial expression of OsMADS1 in flowers. In addition, our transient gene expression assay revealed that the large first intron following the CaMV35S minimal promoter enhances flower-preferential expression of GUS. These results suggest that the OsMADS1 intragenic sequence, largely intron 1, contains a key regulatory region(s) essential for expression.  相似文献   

2.
3.
4.
5.
6.
以pB1121为出发质粒,利用烟草泛素启动子Ubi.U4、CaMV35S启动子以及Kozak序列构建4种GUS基因表达载体,通过叶盘转化法转化烟草叶片,检测瞬时表达活性,研究不同调控序列对外源基因表达的调控作用。结果表明:CaMV35S启动子附加Kozak序列后使GUS活性比独立使用CaMV35S提高了近2倍:双CaMV35S启动子附加Kozak序列驱动GUS基因的表达活性与单CaMV35S附加Kozak序列相当;烟草泛素启动子附加Kozak序列的表达活性为CaMV35S启动子附加Kozak序列的1.5倍;Ubi.U4-CaMV35S复合启动子附加Kozak序列驱动GUS基因表达水平最高,其表达效率是双CaMV35S启动子附加Kozak序列调控下GUS表达效率的3倍,为CaMV35S独立作用时的10倍。  相似文献   

7.
以pBI121为出发质粒, 利用烟草泛素启动子Ubi.U4、CaMV35S启动子以及Kozak序列构建4种GUS基因表达载体,通过叶盘转化法转化烟草叶片, 检测瞬时表达活性, 研究不同调控序列对外源基因表达的调控作用。结果表明: CaMV35S启动子附加Kozak序列后使GUS活性比独立使用CaMV35S提高了近2倍; 双CaMV35S启动子附加Kozak序列驱动GUS基因的表达活性与单CaMV35S附加Kozak序列相当; 烟草泛素启动子附加Kozak序列的表达活性为CaMV35S启动子附加Kozak序列的1.5倍; Ubi.U4-CaMV35S复合启动子附加Kozak序列驱动GUS基因表达水平最高, 其表达效率是双CaMV35S启动子附加Kozak序列调控下GUS表达效率的3倍, 为CaMV35S独立作用时的10倍。  相似文献   

8.
9.
10.
We describe a newRenilla reniformis luciferase reporter gene,RiLUC, which was designed to allow detection of luciferase activity in studies involvingAgrobacterium-based transient expression studies. TheRLUC gene was altered to contain a modified intron from the castor bean catalase gene while maintaining consensus eukaryotic splicing sites recognized by the plant spliceosome.RLUC andRiLUC reporter genes were fused to the synthetic plant SUPER promoter. Luciferase activity within agrobacteria containing the SUPER-RLUC construct increased during growth in culture. In contrast, agrobacteria harboring the SUPER-RiLUC gene fusion showed no detectable luciferase activity. Agrobacteria containing these gene fusions were cotransformed with a compatible normalization plasmid containing a cauliflower mosaic virus 35S promoter (CaMV) joined to the firefly luciferase coding region (FiLUC) and infused into tobacco leaf tissues through stomatal openings. The kinetics of luciferase production from theRLUC orRiLUC reporters were consistent, with expression of theRiLUC gene being limited to transiently transformed plant cells.RiLUC activity from the reporter gene fusions was measured transiently and within stably transformed tobacco leaf tissues. Analysis of stably transformed tobacco plants harboring either reporter gene fusion showed that the intron altered neither the levels of luciferase activity nor tissue-specific expression patterns driven by the SUPER promoter. These results demonstrate that theRiLUC reporter gene can be used to monitor luciferase expression in transient and stable transformation experiments without interference from contaminating agrobacteria.  相似文献   

11.
Analysis of the expression of the GUS reporter gene driven by various regions of the Petunia hybrida chalcone synthase (chsA) promoter revealed that the developmental and organ-specific expression of the chsA gene is conferred by a TATA proximal module located between -67 and -53, previously designated as the TACPyAT repeats. Histochemical analysis of GUS reporter gene expression revealed that the organ-specific 67 bp promoter fragment directs the same cell-type specificity as a 530 bp promoter, whereas additional enhancer sequences are present within the more TATA distal region. Moreover, the region between -800 and -530 is also involved in extending the cell-type specificity to the trichomes of flower organs and of young seedlings. The mechanism by which the TACPyAT repeats modulate expression during plant development was studied by analysing the expression of the GUS gene driven by chimeric promoters consisting of the CaMV 35S enhancer (domain B, -750 to -90) fused to various chsA 5' upstream sequences. Detailed enzymatic and histochemical analysis revealed that in the presence of the TACPyAT module the CaMV 35S region only enhances GUS activity in those organs in which the chsA promoter is normally active. Furthermore, this analysis shows that enhancement in the presence of the CaMV 35S domain B is accomplished by increasing the number of cell types expressing the GUS gene within the organ, rather than enhancement of the chsA cell-type-specific expression within these organs. Deletion of the TACPyAT sequences in the chimeric promoter construct completely restores the well-documented CaMV 35S domain B cell-type specificity, showing that the TACPyAT module acts as a dominant negative cis-acting element which controls both organ and developmental regulation of the chsA promoter activity.  相似文献   

12.
Summary To understand the properties of the cauliflower mosaic virus (CaMV) 35S promoter in a monocotyledonous plant, rice (Oryza sativa L.), a transgenic plant and its progeny expressing the CaMV35S-GUS gene were examined by histochemical and fluorometric assays. The histochemical study showed that -glucuronidase (GUS) activity was primarily localized at or around the vascular tissue in leaf, root and flower organs. The activity was also detected in the embryo and endosperm of dormant and germinating seeds. The fluorometric assay of various organs showed that GUS activity in transgenic rice plants was comparable to the reported GUS activity in transgenic tobacco plants expressing the CaMV35S-GUS gene. The results indicate that the level of expression of the CaMV 35S promoter in rice is similar to that in tobacco, a dicotyledonous plant, suggesting that it is useful for expression of a variety of foreign genes in rice plants.  相似文献   

13.
14.
Functional analysis of BnMAR element in transgenic tobacco plants   总被引:1,自引:0,他引:1  
Scaffold/matrix attachment regions (S/MARs) are defined as genomic DNA sequences, located at the physical boundaries of chromatin loops. Previous reports suggest that S/MARs elements may increase and stabilize the expression of transgene. In this study, DNA sequence with MAR characteristics has been isolated from B. napus . The BnMARs sequence was used to flank the CaMV35S-GUS-NOS expression cassette within the T-DNA of the plant expression vector pPZP212. These constructs were introduced into tobacco plants, respectively and the GUS reporter gene expression was investigated in stably transformed plants. When the forward BnMARs sequence was inserted into the upstream of CaMV35S promoter, the average GUS activities were much higher than those without BnMARs in transgenic tobacco. The GUS expression of M(+)35S:GUS, M(+)35S:GUSM(+) and M(+)35S:GUSM(−) constructs increased average 1.0-fold, with or without BnMARs located downstream of NOS. The GUS expression would not be affected when reverse BnMARs sequence inserted whether upstream of CaMV35S promoter or downstream of NOS. The GUS expression was affected a little when reverse BnMARs sequence was inserted the downstream of NOS and BnMARs could not act by serving as of promoter. The results showed that the presence of forward BnMARs sequence does have an obvious impact on enhancing downstream gene expression and its effect is unidirectional.  相似文献   

15.
LEA1 gene from Glycine max can be expressed in late-embryo stage of plants, and respond to salinity and dehydration stress. To elucidate the mechanism for stress tolerance and high expression in seeds, we isolated and characterized the promoter of LEA1 gene (EQ, 1997 bp) starting the 5′LEA1 coding region. A deletion mutant of EQ promoter (ED) and the full length promoter (EQ) were fused to GUS reporter gene and transformed into the tobacco leaf discs. The results indicated that expression of the reporter gene (GUS) could be regulated by EQ promoter, and was stronger than the mutant under the stress conditions. Also, the expression level of GUS gene driven by EQ promoter in transgenic tobacco seeds was significantly higher than that by the mutant promoter, which meant that it had a better tissue-specificity. Therefore, the active domain for the promoter was located between ?1997 and ?1000 bp. Additionally, the activity of EQ promoter was 2.1-, 3.3- and 0.4- times stronger than the activity of promoter CaMV35S under salt (24 h), drought (10 h) or ABA (24 h), respectively. Meanwhile, the GUS activity of EQ promoter in seeds was 1.8-fold stronger compared to the promoter CaMV35S. In summary, the new promoter (EQ) is bi-functional, stress-inducible and seed-specific. These findings provide a further understanding for the regulation of LEA1gene expression, and suggest a new way for improving seed quality under saline and alkaline land.  相似文献   

16.
17.
The first intron (EPI) of rice 5-enolpyruvylshikimate 3-phosphate synthase gene was isolated by PCR from one clone with genomic EPSP synthase gene. Sequence analysis showed that the first intron is 704 bp in length with 36.2% G+C content. To investigate its effect on expression of foreign gene, we inserted the first intron between CaMV35S promoter and β-glucuronidase (GUS) gene. The transient expression results showed that GUS could be expressed effectively with EPI. The GUS activity in transgenic tobacco shows that the EPI can greatly enhance the expression level of β-glucuronidase (P < 0.01) compared with transgenic tobacco without the first intron, and 3-to 6-fold increase in GUS activity in some transgenic tobaccos. Northern blot indicated the first intron was spliced from GUS pre-mRNA, and the steady-state mRNA levels of GUS with EPI in transgenic tobaccos were higher than that in transgenic tobacco without EPI, which suggested that the first intron of EPSP was a non-translated intron.  相似文献   

18.
The first intron of rice EPSP synthase enhances expression of foreign gene   总被引:5,自引:0,他引:5  
Translatable exon sequences in pre-mRNA often are separated by non-coding introns in eu-karyotic genomes. The removal of non-coding introns from pre-mRNA and the splicing together of translatable exons sequence is an essential requirement of gene expression. DNA size of introns in a gene is 5—10 times larger than that of exon, which can store more information and is helpful for a gene during evolution[1]. In many experiments on gene expression, it is indispensable for a gene to be expresse…  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号