首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
通过分析太阳能槽式集热器真空集热管的热性能,建立了槽式集热器真空集热管稳态传热模型,通过和典型实验数据对比,验证该模型的适用性和准确性。在此基础上,分析在无光照条件下,吸热管内壁温度、环境温度、风速和集热管残存气体种类等因素对集热管热损失的影响。结果表明:吸热管内壁温度的升高会增大玻璃管外壁温度和集热管热损失;环境温度和风速对玻璃管外壁温度有显著影响,但对热损失的影响甚微;吸热管与玻璃管之间以辐射传热为主,对流换热受环形区域残存气体种类和压力的影响。  相似文献   

2.
提出通过对翅片背面进行粗糙处理来防止翅片式热管真空集热管高温过热的方法,建立真空集热管的一维传热模型,介绍在室温稳态条件下测试其热性能的实验台及热平衡测试方法,测试在不同加热功率和翅片背面不同粗糙度条件下的平衡温度,获得不同平衡温度条件下的热损失率。实验结果表明,增加翅片背面的粗糙度可增大热辐射,从而增加集热管的热损失,对解决夏季高原地区集热器过热问题有意义。  相似文献   

3.
为研究以熔盐作为传热介质的槽式光热电站集热回路夜间低速循环工况的热损失特性,首先利用辐射热网络法和传热热阻原理建立集热管稳态传热模型,通过与典型实验数据对比,验证该模型的适用性和准确性。在此基础上,考察在夜间熔盐低速循环工况下,集热回路长度、环境温度、风速、熔盐流速、熔盐入口温度、集热管真空度等因素对集热回路热损失的影响。研究表明,回路长度、熔盐流速、熔盐入口温度和集热管真空度是集热回路夜间热损失性能的主要影响因素;相比之下,环境温度和风速对热损失的影响较小。  相似文献   

4.
基于太阳能真空集热管结构,应用传热学模型、气象参数模型以及流体工质物理模型分析其传热特性,并在此基础上归纳方程,得到真空集热管的吸热管温度、热损失以及被加热流体工质温度等与室外气象条件的关系。最后,利用该方程模拟真空集热管在冬季白天气象条件下的动态响应特征,并给出模拟结果。结果表明:吸热管温度与室外温度关联度小;热损失在较高辐照度时较大,呈"瘦高"型;同时,对热损失以及玻璃管外壁温度进行试验验证。试验表明:吸热管温度在320℃以下,模拟结果与试验符合较好。  相似文献   

5.
辐射散热是槽式太阳能真空集热管热损失的主要途径,为降低真空集热管高温运行中传热热损,该文提出一种内置遮热板的新型高温集热管结构,基于辐照换热的光谱分布参数模型,对不同环境条件下有、无遮热板的真空集热管热损失进行性能模拟和比较分析。结果表明,设定环境温度15℃、风速2.5 m/s、太阳辐照800 W/m~2时,集热温度低于临界温度285℃时,遮热板会增大集热管辐射热损;当高于临界温度时,遮热板会减少集热管辐射热损。当集热温度分别为300、400、500、600℃时,集热管新结构会分别减少热损6.1%、18.0%、23.4%、25.8%。  相似文献   

6.
运用Fluent软件中的太阳加载模型,以新型CPC内聚光式集热器为研究对象,通过理论分析和数值模拟相结合的方法研究了环形空间真空层的传热特性,分析了不同环形空间压力和不同气体介质下CPC内聚光式集热器温度场的分布以及热损失特性。模拟结果表明,在太阳辐照度一定的情况下,环形空间压力越大,集热器热损失也就越大,当环形空间压力下降到1 Pa时,环形空间的热损失基本不再受环形空间压力的影响。研究结果可揭示环形空间内部的传热机理,确定CPC内聚光式集热器内合理的真空压力,为CPC内聚光式集热器结构参数的优化以及集热效率的提高提供可行性依据。  相似文献   

7.
建立太阳能集热管物理模型,采用RNG κ-ε模型,基于CFD方法在不同热流边界条件下熔盐入口温度300℃,速度0.6~3.6 m/s,平均热流密度180 k W/m2参数范围内,对外径20 mm,壁厚2 mm的集热管内熔盐传热特性进行数值模拟研究。分析了集热管管壁温度分布规律和熔盐传热性能,对比了不同热流边界下管壁周向温度不均匀分布特性。研究结果表明:不同热流条件下集热管管壁温度分布规律差异较大,管内熔盐温度也存在较大差异;集热管内Nu随Re增大而升高,周向热流分布对Nu影响较大;非均匀热流边界下集热管壁温周向分布不均匀,周向热流越不均匀,壁面温差越大。  相似文献   

8.
在分析了国内外真空集热管发展现状和最新动态的基础上,对槽式聚光集热器真空集热管建立了热损失模型,运用理论公式分析方法对热损失产生的原因进行了深入分析,并通过实验验证了热损失经验公式,得出结论:影响热损失的主要因素在于工质与环境的温差,以及真空集热管的真空度。  相似文献   

9.
槽式太阳能集热管热性能评估方法   总被引:1,自引:0,他引:1  
真空集热管是槽式太阳能聚光集热系统的核心部件之一.集热管工作过程中通过辐射换热、对流换热和热传导的方式将热量传递给环境,这部分传递到环境中的热量称为集热管的热损失.真空集热管的热损失是聚光集热系统热损失或总能量损失的主要组成,在很大程度上决定着聚光集热器的光-热转换效率,因此对集热管热性能的正确评估对聚光集热系统的研究至关重要.本文对槽式太阳能集热管热性能的计算、评估分析方法等进行了分析.  相似文献   

10.
槽式太阳能真空集热管的热损失研究   总被引:1,自引:0,他引:1  
建立了真空集热管中吸收管与玻璃管之间热辐射和残余气体热对流、玻璃管与外界环境之间热对流和玻璃管对天空热辐射的数学模型,提出了模型的计算方法,并通过和实验数据的比较验证了模型的准确性。同时利用模型分析了几种影响热损失的主要因素,分析结果表明:吸收管温度越高,热损失越大;环境温度越低,风速越大,热损失越大,但影响很小;选择性吸收涂层的发射率是影响热损失的主要因素;真空度对热损失也有很大影响。  相似文献   

11.
The vacuum solar receiver is the key component of a parabolic trough solar plant, which plays a prominent role in the gross system efficiency. Recently, China’s first high temperature vacuum receiver, Sanle-3 HCE, has been developed and produced by Southeast University and Sanle Electronic Group. Before being utilized in China’s first parabolic trough solar plant, accurately estimating the thermal properties of this new receiver is important. This paper first establishes and optimizes a 1-D theoretical model at Matlab program to compute the receiver’s major heat loss through glass envelope, and then systematically analyzes the major influence factors of heat loss. With the laboratorial steady state test stand, the heat losses of both good vacuum and non-vacuum Sanle-3 receivers were surveyed. Comparison shows the original 1-D model agrees with the ends covered test while remarkably deviating from end exposed test. For the purpose of identifying the influence of receiver’s end to total heat loss, an additional 3-D model is built by CFD software to further investigate the different heat transfer processes of receiver’s end components. The 3-D end model is verified by heating power and IR temperature distribution images in the test. Combining the optimized 1-D model with the new 3-D end model, the comparison with test data shows a good accordance. At the same time the heat loss curve and emittance curve of this new receiver are given and compared with those of several other existing receivers as references.  相似文献   

12.
讨论了一种新型管的管簇结构腔体式吸收器,基于网络法建立了确定各种热流的控制方程及总热阻并给出集热器及各主要部件的效率定义式,最后对热性能进行了详细的数值分析。  相似文献   

13.
The useful heat gain of a parabolic collector system is directly dependent on the heat loss from the absorber at its operating temperature. Selective coatings with evacuated/non evacuated glass tubes are employed to control radiative and convective heat losses. A concentric glass shell under vacuum is investigated for its thermal performance as this method circumvents the need for direct sealing between the glass envelope and the metal receiver to maintain vacuum and its related technical challenges. The performance is compared against a non evacuated receiver and its influence under different wind velocities; emissivities are calculated by a one dimensional theoretical model and solved by an iterative method.  相似文献   

14.
The vacuum characteristics and lifetime are the key problems of parabolic trough receiver. Heat loss of the receiver will greatly increase when the vacuum has been lost. Especially, if hydrogen is inside the annulus space of the receiver, heat loss at a level is approximately a factor of four higher than the loss for a receiver with good vacuum. Suitable vacuum levels and residual gases should be maintained in the receiver to ensure performances during its projected lifetime. In this paper, the variations of composition and partial pressure of residual gases with temperature in the receiver were measured by a high sensitivity quadrupole mass spectrometer gas analyzer. The effects of residual gas and getter on the vacuum lifetime of receiver were analyzed. The results showed that hydrogen was the main residual gas in the annular space of receiver without getter, and the nitrogen was the main gas released in the receiver with getter. It can be confirmed that the residual gas analysis was a very effective way to predict and evaluate the vacuum lifetime of the receiver.  相似文献   

15.
非共晶相变材料应用于太阳能吸热蓄热器的数值分析   总被引:1,自引:0,他引:1  
通过计算分析发现对于目前的吸热蓄热器结构,采用相变发生在一个温度区间的非共晶熔盐混合物作为相变材料可以较好的提高吸热蓄热器的整体性能。主要表现在明显地提高相变材料的利用率、减小换热管工质出口温度波动、减小容器表面最大温度及容器表面温度变化,经过合理的设计还可以减小整体系统的质量。分析结果可以作为吸热器设计的参考。  相似文献   

16.
组合相变材料换热管吸热器性能的数值分析   总被引:2,自引:1,他引:2  
吸热器是空间太阳能热动力发电系统关键部件之一。传统吸热器采用单一熔点的相变材料。该文提出了由不同溶点的相变材料组成的组合PCM换热管吸热器模型,计算了换热管最大温度、工质出口温度、各容器PCM熔化率、换热管总PCM熔化率等结果。并与单一PCM换热管吸热器进行了比较分析,说明了采用组合PCM换热管可以很好的提高吸热器的性能,对于减少工质温度波动、减少吸热器质量有重要的意义。计算结果可以较好的指导吸热器的设计。  相似文献   

17.
针对高温真空集热管真空老化性能展开真空度预测和寿命评价研究。模拟电站高温集热管运行环境,在400℃进行热循环模拟和热损测试,在450℃进行过热加速循环试验。结果表明:集热管封离后,室温条件下其内初始真空度达4.7×10-4Pa,在400和450℃经过400次循环后,管内真空度分别为5×10-3Pa和6×10-2Pa。室温状态下集热管在吸收涂层法向发射比为0.08,真空度为10-3Pa时,400℃下热损为216 W/m,显示出良好的热性能。拟合结果表明在400℃条件下集热管使用寿命满足25年要求。  相似文献   

18.
为降低多孔介质高温吸热器的辐射散热损失,设计一种玻璃套管-多孔介质双层吸热芯。采用实验测量和蒙特卡洛数值模拟方法,定量分析双层吸热芯的多光谱热辐射传输特性。结果表明,绝大多数太阳辐射外热源在双层吸热芯的内部被吸收(多孔介质入口段)。当工作温度为1000 K时,双层吸热芯的太阳光吸收比与自身红外辐射发射比之比达到约2.0,其辐射热效率较单层多孔介质吸热芯高约30%。  相似文献   

19.
Hydrogen behavior at elevated pressures and temperatures was intensively studied by numerous investigators. Nevertheless, there is a lack of experimental data on hydrogen ignition and combustion at reduced sub-atmospheric pressures. Such conditions are related to the facilities operating under vacuum or sub-atmospheric conditions, for instance like ITER vacuum vessel. Main goal of current work was an experimental evaluation of such fundamental properties of hydrogen–air mixtures as flammability limits and laminar flame speed at sub-atmospheric pressures. A spherical explosion chamber with a volume of 8.2 dm3 was used in the experiments. A pressure method and high-speed camera combined with schlieren system for flame visualization were used in this work. Upper and lower flammability limits and laminar flame velocity have been experimentally evaluated in the range of 4–80% hydrogen in air at initial pressures 25–1000 mbar. An extraction of basic flame properties as Markstein length, overall reaction order and activation energy was done from experimental data on laminar burning velocity.  相似文献   

20.
首次提出太阳能集热器系统单元(微元)段分节点热阻、热容网络——四维热网络概念,并以此建立腔体式吸收器-槽形抛物镜太阳能集热器系统的集热过程动态仿真模型。利用该模型计算了抛物镜反射率p、腔体窗透过率tg及腔体窗发射率eg对太阳能集热器系统热性能的影响  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号