首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
研究了低温养护对硫铝酸盐水泥-硅酸盐水泥-石膏三元体系凝结时间、抗压强度、干燥收缩等宏观性能的影响,并采用X射线衍射仪分析了不同温度下的水化产物。结果表明,低温及石膏掺量均影响着水化产物钙矾石及单硫型水化硫铝酸钙的生成,从而对宏观性能产生影响。石膏掺量较低时,低温对凝结时间影响不大;石膏掺量较高时,低温大幅延缓了凝结。低温养护延缓三元体系的早期水化,明显降低早期强度及干燥收缩,但对后期强度影响不大。  相似文献   

2.
分别对含二水石膏和无水石膏的硫铝酸盐水泥进行研究,通过进行抗压强度和膨胀率测定,以及利用XRD、TG/DTG、Rietveld等方法对水化产物进行定性定量分析,探讨两者水化产物、膨胀率与抗压强度的差异。结果显示,含无水石膏的硫铝酸盐水泥抗压强度要大于含二水石膏的硫铝酸盐水泥;石膏掺量较多(石膏与硫铝酸钙摩尔比为1.5)时二水石膏对于发挥水泥膨胀性能的贡献较大,掺量较低(石膏与硫铝酸钙摩尔比为0.5和1.0)时两种石膏对于促进膨胀率发展作用相差不大;二水石膏对于促进硫铝酸盐熟料水化的效果比无水石膏要好。  相似文献   

3.
采用X射线衍射仪、环境扫描电子显微镜(背散射电子成像)、压汞仪分析了养护温度对铝酸盐水泥-硅酸盐水泥-无水石膏三元体系水化早期的水化相组成、抛光断面微观结构和孔结构等微结构演变的影响。结果表明:无论0℃还是40℃养护,三元体系的主要水化产物始终为水化硫铝酸钙类物相;但养护温度越高,所生成的钙矾石越易向单硫型水化硫铝酸钙转变,且转变得越早,所得硬化浆体的最可几孔径越大。此外,40℃养护3 d后的浆体中还生成了水化钙铝黄长石和三水铝石。  相似文献   

4.
将硫铝酸盐基促强减缩剂(SP-SRA)掺入到基准水泥中,并且按一定的比例设计了硫铝酸盐熟料-硬石膏-基准水泥的配合比,对宏观性能、水化过程、微观产物进行了对比分析.结果表明:掺SP-SRA的水泥各个龄期抗压抗折强度均高于硫铝酸盐熟料-硬石膏-基准水泥三元体系;掺SP-SRA的水泥早期水化放热速率大于硫铝酸盐熟料-硬石膏-基准水泥三元体系;XRD结果表明,掺SP-SRA的水泥水化生成的AFt(三硫型水化硫铝酸钙即钙矾石)含量多于三元体系生成的AFt,钙矾石的微膨胀性使得水泥石结构更加致密,有利于提高水泥石的强度,硫铝酸盐熟料-硬石膏-基准水泥体系有明显的AFm(单硫型水化硫铝酸钙)生成,即部分AFt转化成AFm.  相似文献   

5.
王硕  常钧  季娟 《水泥》2018,(6):1
研究了硫铝酸盐水泥熟料、二水石膏和氢氧化钙的不同复合胶凝体系水化产物与其膨胀性能及抗压强度的关系,利用XRD及Rietveld全谱拟合法和TG/DTG技术,对水化产物进行定性定量分析,得出硫铝酸盐水泥熟料-二水石膏体系(简称CG体系)和硫铝酸盐水泥熟料-二水石膏-氢氧化钙体系(简称CGL体系)水化产物中钙矾石(AFt)、单硫型水化硫铝酸钙(AFm)、铝凝胶(AH3)等物相含量的变化规律,并进行比较。结果表明,CGL体系水化产物中AH3和AFm生成量多于CG体系,而AFt生成量在二水石膏与硫铝酸钙摩尔比为0.5和1.0时少于CG体系,达到1.5摩尔比时两个体系相差不大;CGL体系中,掺加氢氧化钙会降低试件早期抗压强度,后期其抗压强度赶上甚至超过未掺加氢氧化钙的试件;随着二水石膏掺量增加,CG体系中AFt早期生成速率和试件膨胀率均呈增大趋势,而CGL体系中AFt早期生成速率和试件膨胀率均呈减小趋势。  相似文献   

6.
掺硫铝酸盐水泥熟料的富硅酸盐水泥体系的性能研究   总被引:4,自引:0,他引:4  
研究了硫铝酸盐水泥熟料对复合硅酸盐水泥性能的影响。研究表明,当复合水泥中掺入少量硫铝酸盐水泥熟料后,再配以适量的石膏,可以提高其早期强度,且随着硫铝酸盐水泥熟料掺量的增加,其凝结时间明显缩短。运用XRD等测试方法探讨了硫铝酸盐水泥熟料改善复合水泥性能的机理。硫铝酸盐水泥熟料水化形成的钙矾石和铝胶,对硅酸盐水泥熟料矿物水化有促进作用,这是水泥凝结加快、强度增加的主要原因。  相似文献   

7.
沈燕  李雪飘  陈玺  张伟 《硅酸盐通报》2018,37(10):3197-3200
硫硅酸钙是硫铝酸盐水泥熟料煅烧过程中形成的一种过渡性矿物,该矿物在Al(OH)4-存在条件下活性可得以有效激发,本文研究了硫硅酸钙对粉煤灰硅酸盐水泥体系凝结时间、强度的影响规律,并对水泥体系7d水化产物进行了XRD分析.结果表明,当硫硅酸钙掺量为5%时,水泥初凝、终凝时间稍微延长,当硫硅酸钙的掺量大于5%时,粉煤灰水泥体系的初凝、终凝时间显著低于未掺粉煤灰的水泥体系;硫硅酸钙5%掺量下可显著提高粉煤灰水泥体系的早期、后期强度,当硫硅酸钙掺量为15%时,水泥强度有所降低;从水化产物的微观分析来看,硫硅酸钙适宜的掺加促进了水泥矿物的水化以及水化产物钙矾石的形成,并且在粉煤灰掺入后,水化产物的形成量增加更加明显.  相似文献   

8.
采用正交试验研究利用低品位铝矾土、铸造废砂、石灰石、石膏等原料制备高贝利特硫铝酸盐水泥的煅烧条件.对生料热稳定性、水泥熟料组成及其水化产物形貌等进行测试表征.可初步确定熟料的煅烧温度范围在1250~1360℃,该水泥熟料的主要矿物组成为贝利特和无水硫铝酸钙,用X-射线K值法定量分析熟料物相组成与理论计算值基本接近.该水泥的主要水化产物有钙矾石、水化硅酸钙凝胶、单硫型水化硫铝酸钙等.实验研究表明:煅烧温度1300℃,保温时间90 min,急冷,制得的高贝利特硫铝酸盐水泥凝结时间短,初凝时间30 min,终凝仅40 min,28 d水泥净浆强度可达65.4 MPa,胶砂强度与市售42.5硫铝酸盐水泥相比,早期强度比较接近,后期强度高出10%.  相似文献   

9.
研究了铝酸盐水泥-硅酸盐水泥-石膏复合胶凝体系对自流平材料性能的影响以及渗透型液体硬化剂对材料表面的改性作用,采用XRD、TG-DSC和SEM分析了胶凝体系的水化产物.结果表明:在铝酸盐水泥-硅酸盐水泥二元体系中,随着硅酸盐水泥掺量的增加,砂浆流动度经时损失逐渐扩大,凝结时间缩短,干缩率增大,各龄期强度均有所降低,但1~3d和3~28 d强度增长幅度更大.在铝酸盐水泥-硅酸盐水泥-石膏三元胶凝体系中,增加α-半水石膏的掺量可促进砂浆凝结硬化,减小干燥收缩率,提高早期强度,但后期强度的增幅有所减小;增加硅酸盐水泥掺量会使砂浆流动度经时损失显著加大,凝结时间缩短,早期强度无明显变化,后期强度增幅较大.在自流平材料表面涂刷硬化剂可有效提高其耐磨性,减少干燥失水率.水化铝酸钙的微观形貌不规则,其XRD衍射峰不显著.在三元胶凝体系的水化产物中,存在着大量真棒状的钙矾石和六方片状的单硫型水化硫铝酸钙.  相似文献   

10.
贝利特-硫铝酸钡钙水泥的煅烧及其性能   总被引:3,自引:0,他引:3  
采用正交试验方法研究了贝利特-硫铝酸钡钙水泥熟料的煅烧条件.实验表明:该水泥熟料的最佳煅烧温度为1 350℃,保温时间为90min,冷却方式是急冷.同时发现,水泥中石膏的最佳掺量为5%(质量分数).所制备的贝利特-硫铝酸钡钙水泥的3 d和28 d抗压强度分别为26A MPa和80.4MPa,显示有良好的早期力学性能;石膏能促进该水泥的水化硬化,增加钙矾石在水化早期的形成数量,这是水泥早期强度提高的主要原因.对水泥熟料及其水化产物的组成、结构和形貌进行了分析.该水泥熟料的主要矿物组成为贝利特、阿利特和硫铝酸钡钙,主要水化产物有水化硅酸钙凝胶、钙矾石和氢氧化钙等.  相似文献   

11.
在硫铝酸盐水泥实际工程应用中,硼砂作为常用的缓凝剂,容易导致硫铝酸盐水泥过度缓凝,为了更好调控水泥的凝结时间,本文研究了锂盐对硼砂在硫铝酸盐水泥中作用的影响,主要从凝结时间、抗压强度、水化产物方面进行了分析。结果表明:当硼砂掺量为0.1%(质量分数,下同)时,氢氧化锂能明显缩短硫铝酸盐水泥的凝结时间,降低水泥的抗压强度;当硼砂掺量为0.5%,氢氧化锂掺量大于0.07%时,水泥的凝结时间大幅度缩短,早期抗压强度随氢氧化锂掺量增加而略微提高,后期强度略微降低;在掺加硼砂的硫铝酸盐水泥体系中,锂盐的掺入不会改变水泥水化产物的种类,当硼砂掺量为0.5%时,1 d水化产物钙矾石衍射峰强度显著降低,28 d钙矾石衍射峰强度变化不明显。  相似文献   

12.
吴宗道 《硅酸盐学报》1994,22(4):399-405
用扫描电镜、X射线能谱仪观测和分析了硫铝酸盐水泥系列的水化产物钙矾石的一种特殊显微形貌-管状钙矾石。在水泥净浆试体中、界面上、不同石膏掺量的水泥浆试体、砂浆试体、水化的熟料颗粒中均可观测到管状钙矾石。它的形成可能与非平衡状态生产的熟料中C4A3S矿相的某种晶体结构有关。  相似文献   

13.
以硅酸盐水泥为机体,利用铝酸盐水泥水化速度快和二水石膏促进生成钙矾石的特点,组成三元复合水泥固化剂固化城市污泥。研究复合水泥对固化体力学性能、矿物组成和水化速率的影响。分析结果表明:固化剂的掺量不应低于20%,铝酸盐水泥和二水石膏会促进固化体水化,产物钙矾石和C-S-H凝胶起到骨架作用,保证了固化体的强度。  相似文献   

14.
0~20℃养护下硅酸盐水泥水化时钙矾石的生成及转变   总被引:2,自引:0,他引:2  
王培铭  徐玲琳  张国防 《硅酸盐学报》2012,40(5):646-647,648,649,650
采用X射线衍射仪及核磁共振仪研究了0、5、10、20℃硅酸盐水泥水化产物钙矾石的生成及转变。结果表明:硅酸盐水泥水化1d至180d,4种养护温度下钙矾石生成量皆先增大后减小,但该规律随养护温度不同而不同:在10℃和20℃养护时,钙钒石生成量在水化3 d时达到最大,0℃和5℃养护时,水化28d时才达到最大;而从水化龄期来看,钙矾石生成量在水化1d时20℃养护时最高(10.2%),水化3d时10℃养护时最高(12.1%),3~180 d时0℃时最高;此外,低温养护显著延迟了钙矾石向单硫型水化硫铝酸钙转变。  相似文献   

15.
研究了不同掺量硬石膏和脱硫石膏对高贝利特硫铝酸盐水泥熟料抗压强度、水化放热和水化产物的影响。结果显示:无论硬石膏或者脱硫石膏,当掺量为15%时,熟料的抗压强度达到最大值;当硬石膏掺量小于5%时,对熟料具有一定的缓凝作用,随着掺量的增加,硬石膏的加入会促进熟料的水化;当加入脱硫石膏时,同样促进了熟料的水化反应进程,与硬石膏相比,脱硫石膏在低掺量时并未有缓凝作用,且力学性能相差较小,由此可见利用脱硫石膏调控高贝利特硫铝酸盐水泥熟料性能是可行的。  相似文献   

16.
王硕  常钧  熊苍  于春阳 《水泥》2018,(11):1
采用XRD和TG/DTG等试验方法,对两种不同细度熟料配制成的硫铝酸盐水泥进行研究,通过Rietveld分析法对水化产物进行定量分析,探讨其膨胀性能与水泥粒径及水化产物的关系。结果表明,减小硫铝酸盐水泥熟料平均粒径对提高抗压强度贡献很大,也可促进硫铝酸盐水泥水化,但并不能显著增加试件膨胀率和膨胀持续时间,二水石膏掺量对于硫铝酸盐水泥膨胀性能的影响要大于熟料粒径的影响。  相似文献   

17.
硫铝酸钙水化生成钙矾石,已被试验充分证实。钙矾石是膨胀、抗水缩、快硬、早强和节能水泥的一种主要矿物组份。但对硫硅酸钙的水化及物理力学性能的了解却甚少,许多研究者观察了它在水泥中的存在,在石膏杂质或矿化剂存在时,硫硅酸钙在普通硅酸盐水泥熟料中仅作为一种微量的矿物相,而在硫铝酸盐水泥熟料中其含量较高。  相似文献   

18.
在地热环境下水泥水化初期,单硫型硫铝酸盐(AFm)易与硫酸根在孔隙或界面处生成延迟钙矾石(DEF),导致混凝土膨胀开裂。本文采用溶液法模拟钙矾石(AFt)生成的温湿耦合液相环境,通过分子动力学模拟方法研究AFt在常温和地热环境下的内部结构变化,确定DEF的生成温度界限和水泥中石膏临界掺量。结果表明,地热高温环境会影响AFt晶体在(100)、(110)晶面上的生长,导致AFt生成量随温度升高逐渐减少;70~75℃为AFt转变为AFm的关键温度区间,但在75℃以上液相环境中AFt依然能够生成,转化的AFm含量会随温度增加而逐渐增多;高温对水泥早期水化生成AFt具有促进作用,但随着养护龄期增长,高温会造成早期生成的AFt逐渐转化为AFm;混凝土中AFt生成量随石膏掺量增大而增加,质量分数为4%左右的石膏是适宜掺量;分子动力学模拟结果同样表明AFt在常温下结构稳定,而在地热条件下结构发生改变。  相似文献   

19.
通过水化程度测试、抗压强度测试、XRD及SEM分析,研究了养护温度对贝利特-硫铝酸钡钙水泥水化程度、力学性能和水化产物的组成及其结构的影响,并将实验结果与普通硅酸盐水泥的相关性能进行比较.结果表明:养护温度对贝利特-硫铝酸钡钙水泥的早期水化影响较大,适当提高养护温度对贝利特-硫铝酸钡钙水泥的早期水化具有显著的促进作用,而对后期水化影响较小.养护温度从5 ℃提高到35 ℃时,该水泥3 d水化程度由31.57%提高到62.56%,水化3 d抗压强度由28.1 MPa增强到52.7 MPa.与普通硅酸盐水泥相比,贝利特-硫铝酸钡钙水泥早期抗压强度受养护温度的影响更大.  相似文献   

20.
权娟娟  张凯峰  王可娜 《硅酸盐通报》2017,36(12):4033-4037
采用质量分数为5%~25%的改性磷石膏、15%的硅酸盐水泥熟料、60%~80%的矿渣混合磨细制成石膏矿渣水泥,研究了改性磷石膏掺量对石膏矿渣水泥浆体的抗压强度、水化热、孔溶液pH值及水化产物的影响情况.结果表明,掺入改性磷石膏使得石膏矿渣水泥的3 d、7 d抗压强度降低,其掺量为10%、15%时,水泥的28 d、90 d抗压强度超过普通硅酸盐水泥.在3 d至90 d龄期内,水泥孔溶液pH值随龄期增长而逐渐增大.在相同龄期时,随着改性磷石膏掺量的增大,水泥孔溶液pH值减小,水化放热峰出现时间延缓.微观分析表明,掺入改性磷石膏后,28 d龄期时的水泥水化产物主要为钙矾石和C-S-H凝胶,水化产物的生成量在改性磷石膏掺量为15%时最多.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号