首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Self-organized InAs quantum-dot (QD) lasers emitting at 1.5 /spl mu/m were grown by gas source molecular beam epitaxy on (100) InP substrates. Room temperature continuous-wave (CW) operation of QD-based buried ridge stripe lasers is reported. We investigated experimentally the relevant CW performances of as-cleaved InP-based QD lasers for telecom applications such as temperature properties (T/sub 0/=56 K), infinite length threshold current density (J/sub /spl infin///spl sim/150 A/cm/sup 2/ per QDs layer) and internal efficiency (0.37 W/A). Lasing in pulsed mode is observed for cavity length as short as 200 /spl mu/m with a threshold current of about 37 mA, demonstrating the high gain of the QD's active core. In addition, the Henry parameter of these InP-based QD lasers is experimentally determined using the Hakki-Paoli method (/spl alpha//sub H//spl sim/2.2).  相似文献   

2.
We report the operation of strained layer In/sub 0.20/Ga/sub 0.80/As quantum well lasers grown on (211)B GaAs substrates, thus incorporating a piezoelectric field. Growth was by atmospheric pressure metal-organic vapor phase epitaxy (MOVPE). The threshold current density of a 1000 /spl mu/m/spl times/75 /spl mu/m device is 91 A/spl middot/cm/sup -2/ and waveguide transparency is estimated at 32 A/spl middot/cm/sup -2/ for a simple separate confinement heterostructure (SCH) emitting at 982 nm.  相似文献   

3.
Midinfrared InGaAsSb-AlGaAsSb strain-compensated multiple quantum-wells (SCMQW) have been grown by solid-source molecular beam epitaxy. Short-period (AlGaAsSb)/sub y/--(AlGaSb)/sub 1-y/ digital barriers were employed to avoid growth interruptions at the barrier-well interfaces, thereby significantly improving the structural and optical properties of the InGaAsSb SCMQW as evidenced by X-ray diffraction and photoluminescence measurements. Based on these high-quality SCMQW, a room-temperature threshold current density as low as 163 A/cm/sup 2/ was achieved for 1000-/spl mu/m-long broad-area lasers emitting at 2.38 /spl mu/m in pulsed mode. The 880-/spl mu/m-long lasers retained a high characteristic temperature (T/sub 0/) of 165 K up to 80/spl deg/C and could operate at temperatures above 100/spl deg/C. A typical wavelength blueshift of 38 meV was observed in the SCMQW laser samples compared to the SCMQW-only samples.  相似文献   

4.
Yeh  J.-Y. Tansu  N. Mawst  L.J. 《Electronics letters》2004,40(12):739-741
Low threshold InGaAsN QW lasers with lasing wavelength at 1.378 and 1.41 /spl mu/m were demonstrated by metal organic chemical vapour deposition (MOCVD). The threshold current densities are 563 and 1930 A/cm/sup 2/ for the 1.378 and 1.41 /spl mu/m emitting lasers, respectively. The significant improvement of device performance is believed due to utilisation of high temperature annealing and introduction of GaAsN barriers to suppress the resulting wavelength blue shift. A comparable characteristic temperature coefficient of the external differential quantum efficiency, T/sub 1/, is observed for the InGaAsN-GaAsN QW laser compared to similar InGaAsN/GaAs structures.  相似文献   

5.
GaInAsSb-AlGaAsSb multiple quantum-well (QW) lasers with an emission wavelength of 2.81 /spl mu/m are reported. The ridge waveguide lasers with highly strained QWs show continuous-wave laser emission up to 25/spl deg/C; in pulsed mode, the lasers operate up to 60/spl deg/C. For pulsed operation, a threshold current density of 360 A/cm/sup 2/ is found for devices with 30-/spl mu/m stripe width and 2-mm cavity length at room temperature. A low threshold current density at infinite length of 248 A/cm/sup 2/ is derived.  相似文献   

6.
Substantially reduced threshold current density and improved efficiency in long-wavelength (>1.4 /spl mu/m) GaAs-based lasers are reported. A 20/spl times/1220 /spl mu/m as-cleaved device showed a room temperature continuous-wave threshold current density of 580 A/cm/sup 2/, external efficiency of 53%, and 200 mW peak output power at 1.5 /spl mu/m. The pulsed threshold current density was 450 A/cm/sup 2/ with 1145 mW peak output power.  相似文献   

7.
We demonstrate a new structure for long-wavelength (1.3-/spl mu/m) vertical-cavity top-surface-emitting lasers using proton implantation for current confinement. Wafer bonded GaAs-AlAs Bragg mirrors and dielectric mirrors are used for bottom and top mirrors, respectively. The gain medium of the lasers consists of nine strain-compensated AlGaInAs quantum wells. A record low room temperature pulsed threshold current density of 1.13 kA/cm/sup 2/ has been achieved for 15-/spl mu/m diameter devices with a threshold current of 2 mA. The side-mode-suppression-ratio is greater than 35 dB.  相似文献   

8.
The room-temperature pulsed operation of a semiconductor laser emitting at 8.5 /spl mu/m is reported. This device is an optimized vertical transition quantum cascade (QC) laser. At 300 K the peak output power from a single facet is 15 mW, and the current density at threshold is /spl sim/8 kA/cm/sup 2/. The temperature dependence of the threshold current density is described by a high T/sub 0/ (107 K) in the 200-320 K temperature range.  相似文献   

9.
We demonstrate, for the first time, double-bonded AlGaInAs strain-compensated quantum-well 1.3-/spl mu/m vertical-cavity surface-emitting lasers (VCSELs). GaAs-AlAs Bragg mirrors were wafer-bonded on both sides of a cavity containing the AlGaInAs strain-compensated multiple-quantum-well active layers sandwiched by two InP layers. The lasers have operated under pulsed conditions at room temperature. A record low pulsed threshold current density of 4.2 kA/cm/sup 2/ and a highest maximum light output power greater than 4.6 mW have been achieved. The maximum threshold current characteristic temperature T/sub 0/ of 132 K is the best for any long wavelength VCSELs. The laser operated in a single-longitudinal mode, with a side-mode suppression ratio of more than 40 dB, which is the best results for 1.3-/spl mu/m VCSELs.  相似文献   

10.
In this letter, we report results of small-signal modulation characteristics of self-assembled 1.3-/spl mu/m InGaAs-GaAs quantum dot (QD) lasers at room temperature. The narrow ridge-waveguide lasers were fabricated with multistack InGaAs self-assembled QDs in active region. A high characteristic temperature of T/sub o/=210 K with threshold current density of 200A/cm/sup 2/ was obtained. Small-signal modulation bandwidth of f/sub -3 dB/=12 GHz was measured at 300 K with differential gain of dg/dn/spl cong/2.4/spl times/10/sup -14/ cm/sup 2/ from detailed characteristics. We observed that a limitation of modulation bandwidth in high current injection appeared with gain saturation. This property can direct future high-speed QD laser design.  相似文献   

11.
Diode lasers emitting at 2.26 /spl mu/m, based on the InGaAsSb-AlGaAsSb materials system, are reported. These devices exhibit high internal quantum efficiency of 78% and low threshold current density of 184.5 A/cm/sup 2/ for a 2-mm-long cavity. Output power up to 700 mW (/spl ap/550 mW) has been obtained at 280 K (300 K) in continuous-wave operation with 100 /spl mu/m/spl times/1 mm lasers. These devices have been coated with an antireflection on the output facet and are mounted epilayer down on a copper block. The working temperature was maintained by a thermoelectric Peltier cooling element.  相似文献   

12.
InGaAsN triple-quantum-well (TQW) ridge waveguide (RWG) lasers were fabricated with contact ridge width of 4, 10, 50, and 100 /spl mu/m, respectively, using pulsed anodic oxidation (PAO). All these lasers worked under continuous-wave operation up to 100/spl deg/C. A clear trend of improved characteristic temperature (T/sub 0/) was observed as the ridge width narrowed. Proper choosing of ridge height and optimized PAO process were believed to minimize the lateral spreading current and reduce the scattering losses at the etched RWG sidewall, both of which are beneficial to the narrow ridge lasers operation. High output power of 298.8 mW, low transparency current density of 130 A/cm/sup 2//well, and high T/sub 0/ of 157.2 K were obtained from InGaAsN TQW 4-/spl mu/m-width lasers.  相似文献   

13.
Operation of type-II interband cascade lasers in the 4.3-4.7-/spl mu/m wavelength region has been demonstrated at temperatures up to 240 K in pulsed mode. These lasers fabricated with 150-/spl mu/m-wide mesa stripes operated in continuous-wave (CW) mode up to a maximum temperature of 110 K, with an output power exceeding 30 mW/f and a threshold current density of about 41 A/cm/sup 2/ at 90 K. The maximum CW operation temperature of 110 K is largely limited by the high specific thermal resistance of the 150-/spl mu/m-wide broad area lasers. A 20-/spl mu/m-wide mesa stripe laser was able to operate in CW mode at higher temperatures up to 125 K as a result of the reduced specific thermal resistance of a smaller device.  相似文献   

14.
The first low-threshold 1.55 /spl mu/m lasers grown on GaAs are reported. Lasing at 1.55 /spl mu/m was observed from a 20/spl times/2400 /spl mu/m as-cleaved device with a room-temperature continuous-wave threshold current density of 579 A/cm/sup 2/, external efficiency of 41%, and 130 mW peak output power. The pulsed threshold current density was 550 A/cm/sup 2/ with >600 mW peak output power.  相似文献   

15.
We present the first continuous-wave (CW) edge-emitting lasers at 1.5 /spl mu/m grown on GaAs by molecular beam epitaxy (MBE). These single quantum well (QW) devices show dramatic improvement in all areas of device performance as compared to previous reports. CW output powers as high as 140 mW (both facets) were obtained from 20 /spl mu/m /spl times/ 2450 /spl mu/m ridge-waveguide lasers possessing a threshold current density of 1.06 kA/cm/sup 2/, external quantum efficiency of 31%, and characteristic temperature T/sub 0/ of 139 K from 10/spl deg/C-60/spl deg/C. The lasing wavelength shifted 0.58 nm/K, resulting in CW laser action at 1.52 /spl mu/m at 70/spl deg/C. This is the first report of CW GaAs-based laser operation beyond 1.5 /spl mu/m. Evidence of Auger recombination and intervalence band absorption was found over the range of operation and prevented CW operation above 70/spl deg/C. Maximum CW output power was limited by insufficient thermal heatsinking; however, devices with a highly reflective (HR) coating applied to one facet produced 707 mW of pulsed output power limited by the laser driver. Similar CW output powers are expected with more sophisticated packaging and further optimization of the gain region. It is expected that such lasers will find application in next-generation optical networks as pump lasers for Raman amplifiers or doped fiber amplifiers, and could displace InP-based lasers for applications from 1.2 to 1.6 /spl mu/m.  相似文献   

16.
Laser emission at 4.2-4.5 /spl mu/m has been observed at temperatures up to 310 K in pulsed optical pumping experiments on type-II quantum-well (QW) lasers with four constituents in each period (InAs-Ga/sub 1-x/In/sub x/Sb-InAs-AlSb). The characteristic temperature, T/sub 0/, is 41 K, and a peak output power exceeding 2 W/facet is observed at 200 K. The power conversion efficiency per facet of /spl ap/0.2% up to 200 K is within a factor of 2 of the theoretical value. The 300 K Auger coefficient of 4/spl times/10/sup -27/ cm/sup 6//s extracted from the threshold pump intensity demonstrates that Auger losses have been suppressed by a factor of four.  相似文献   

17.
Stable single-mode single-lobe operation to high powers is predicted for two-dimensional surface-emitting lasers, if second-order distributed feedback/distributed Bragg reflector (DFB/DBR) gratings are preferentially placed in the elements of a resonant-optical-waveguide array. Beside their usual functions (i.e., feedback and outcoupling), the gratings act as an effective array-mode selector due to different interaction with the gratings of different array modes. The in-phase array mode is strongly favored to lase around its (lateral) resonance due to better field overlap with DFB region and lower interelement absorption loss than for nonresonant array modes. For 20-element arrays with 700/600 /spl mu/m DFB/DBR gratings, emitting at /spl lambda/=0.98 /spl mu/m, high (/spl sim/100 A/cm/sup 2/) intermodal discrimination /spl Delta/J/sub th/ is obtained. /spl Delta/J/sub th/ is enhanced to /spl sim/225 A/cm/sup 2/ by introducing free-carrier absorption in the array-interelement regions.  相似文献   

18.
Double quantum well laser diodes based on the GaInAsSb/AlGaAsSb system emitting at 2.61 /spl mu/m in continuous-wave regime have been fabricated. In the pulsed regime for a 100 /spl mu/m-wide 1600 /spl mu/m-long device a record threshold current density of 76 A/cm/sup 2/ per quantum well was obtained.  相似文献   

19.
We have demonstrated high-performance InGaAsN triple-quantum-well ridge waveguide (RWG) lasers fabricated using pulsed anodic oxidation. The lowest threshold current density of 675 A/cm/sup 2/ was obtained from a P-side-down bonded InGaAsN laser, with cavity length of 1600 /spl mu/m and contact ridge width of 10 /spl mu/m. The emission wavelength is 1295.1 nm. The transparency current density from a batch of unbonded InGaAsN RWG lasers was 397 A/cm/sup 2/ (equivalent to 132 A/cm/sup 2/ per well). High characteristic temperature of 138 K was also achieved from the bonded 10/spl times/1600-/spl mu/m/sup 2/ InGaAsN laser.  相似文献   

20.
In/sub 0.22/Ga/sub 0.78/As-GaAs quantum-well stripe-geometry and circular ring lasers have been fabricated with pulsed anodic oxidation (PAO). The relationship between ridge heights and laser performance was first studied in the fabrication of stripe lasers. The lowest transparency current density (J/sub tr/) of 61.20 A/cm/sup 2/ was obtained from the stripe laser with a ridge height of 1.23 /spl mu/m, corresponding to an etching depth where all the p-doped layers above active region were removed. With the PAO process, when the ridge height (1.77 /spl mu/m) extended below the active region, J/sub tr/ is 76.03 A/cm/sup 2/, only increased by 24.2%. Based on the experimental results, the circular ring laser, which needs deep etching (below active region) and subsequent PAO, has been fabricated. The fabricated circular ring laser worked under continuous-wave operation at room temperature. Longitudinal mode spacing analysis clearly indicates that the ring resonator is a functional part of the whole circular ring laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号