首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
A new discrete‐time actuator failure compensation control scheme is developed, using a multiple‐model adaptive control approach which has the capacity to achieve faster and more accurate compensation of failure uncertainties. An individual adaptive system, for each possible failure pattern in a failure pattern set of interest for compensation, is designed using an indirect model reference adaptive control scheme for actuator failure compensation. A multiple‐model control switching mechanism for discrete‐time systems is set up by finding the minimal performance index to select the most appropriate control law. The performance indices are based on the adaptive estimation errors of individual parameterized systems with actuator failures. Simulation results from an aircraft flight control system example are presented to show the desired closed‐loop system stability and tracking performance despite the presence of uncertain actuator failures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
An adaptive compensation control scheme using output feedback is designed and analysed for a class of non‐linear systems with state‐dependent non‐linearities in the presence of unknown actuator failures. For a linearly parameterized model of actuator failures with unknown failure values, time instants and pattern, a robust backstepping‐based adaptive non‐linear controller is employed to handle the system failure, parameter and dynamics uncertainties. Robust adaptive parameter update laws are derived to ensure closed‐loop signal boundedness and small tracking errors, in general, and asymptotic regulation, in particular. An application to controlling the angle of attack of a non‐linear hypersonic aircraft dynamic model in the presence of elevator segment failures is studied and simulation results show that the developed adaptive control scheme has desired actuator failure compensation performance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, adaptive compensation designs are developed for nonlinear systems with uncertainties from the system functions and persistent actuator failures of characterizations that (i) some unknown system inputs are stuck at some unknown fixed or varying values at unknown time instants and (ii) the failure pattern always switches from one to another and the switching does not stop. Such a controlled plant is described by an uncertain time-varying nonlinear system, and some robust adaptive feedback linearization based failure compensation results are studied for closed-loop system stabilization and bounded output tracking for some specific conditions. To improve the tracking performance in the presence of persistent actuator failures, a new adaptive control scheme is developed, using the failure indicator function which contains the failure pattern and failure time in the formulation. Detailed stability and tracking performance are shown. Simulation results are shown to verify the effectiveness of the proposed adaptive actuator failure compensation method.  相似文献   

4.
In this paper, we solve the problem of output tracking for linear uncertain systems in the presence of unknown actuator failures using discontinuous projection‐based output feedback adaptive robust control (ARC). The faulty actuators are characterized as unknown inputs stuck at unknown values experiencing bounded disturbance and actuators losing effectiveness at unknown instants of time. Many existing techniques to solve this problem use model reference adaptive control (MRAC), which may not be well suited for handling various disturbances and modeling errors inherent to any realistic system model. Robust control‐based fault‐tolerant schemes have guaranteed transient performance and are capable of dealing with modeling errors to certain degrees. But, the steady‐state tracking accuracy of robust controllers, e.g. sliding mode controller, is limited. In comparison, the backstepping‐based output feedback adaptive robust fault‐tolerant control (ARFTC) strategy presented here can effectively deal with such uncertainties and overcome the drawbacks of individual adaptive and robust controls. Comparative simulation studies are performed on a linearized Boeing 747 model, which shows the effectiveness of the proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, the problem of output feedback tracking control for uncertain Markov jumping nonlinear systems is studied. A finite-time control scheme based on command filtered backstepping and adaptive neural network (NN) technique is given. The finite-time command filter solves the problem of differential explosions for virtual control signals, the NN is utilized to approximate the uncertain nonlinear dynamics and the adaptive NN observer is applied to restructure the state of system. The finite-time error compensation mechanism is established to compensate the errors brought by filtering process. The proposed finite-time tracking control algorithm can ensure that the solution of the closed-loop system is practically finite-time stable in mean square. Two simulation examples are employed to demonstrate the effectiveness of the proposed control algorithm.  相似文献   

6.
This paper focuses on solving the adaptive optimal tracking control problem for discrete‐time linear systems with unknown system dynamics using output feedback. A Q‐learning‐based optimal adaptive control scheme is presented to learn the feedback and feedforward control parameters of the optimal tracking control law. The optimal feedback parameters are learned using the proposed output feedback Q‐learning Bellman equation, whereas the estimation of the optimal feedforward control parameters is achieved using an adaptive algorithm that guarantees convergence to zero of the tracking error. The proposed method has the advantage that it is not affected by the exploration noise bias problem and does not require a discounting factor, relieving the two bottlenecks in the past works in achieving stability guarantee and optimal asymptotic tracking. Furthermore, the proposed scheme employs the experience replay technique for data‐driven learning, which is data efficient and relaxes the persistence of excitation requirement in learning the feedback control parameters. It is shown that the learned feedback control parameters converge to the optimal solution of the Riccati equation and the feedforward control parameters converge to the solution of the Sylvester equation. Simulation studies on two practical systems have been carried out to show the effectiveness of the proposed scheme.  相似文献   

7.
The problem of adaptive tracking control is addressed for the class of linear time‐invariant plants with known parameters and arbitrary known input delay. The reference signal is a priori unknown and is represented by a sum of biased harmonics with unknown amplitudes, frequencies, and phases. Asymptotic tracking is provided by predictive adjustable control with parameters generated by one of three designed adaptation algorithms. The first algorithm is based on a gradient scheme and ensures zero steady‐state tracking error with all signals bounded. The other two algorithms additionally involve the scheme with fast parametric convergence improving the closed‐loop system performance. In all the algorithms, the problem of delay compensation is resolved by special augmentation of tracking error. The adjustable control law proposed do not require identification of the reference signal parameters.  相似文献   

8.
The adaptive robust output tracking control problem is considered for a class of uncertain nonlinear time‐delay systems with completely unknown dead‐zone inputs. A new design method is proposed so that some adaptive robust output tracking control schemes with a rather simple structure can be constructed. It is not necessary to know the nonlinear upper bound functions of uncertain nonlinearities. In fact, the constructed output tracking control schemes are structurally linear in the state and have a self‐tuning control gain function that is updated by an adaptation law. In this paper, the dead‐zone input is nonsymmetric, and its information is assumed to be completely unknown. In addition, a numerical example is given to describe the design procedure of the presented method, and the simulations of this numerical example are implemented to demonstrate the validity of the theoretical results.  相似文献   

9.
一种新型的间接自适应模糊控制器   总被引:1,自引:0,他引:1  
自适应模糊控制为复杂对象的控制提供了有效途径,引起控制领域的广泛关注。针对一类单输入单输出非线性不确定对象,利用Popov超稳定理论提出了一种新型的间接自适应模糊控制器设计方案。该方案首先采用对象模型构成理想的控制器,利用模糊系统的万能逼近特性构造若干模糊系统在线逼近未知的对象模型,然后将闭环系统转换为1个线性定常的前向环节和1个非线性时变的反馈环节组成的等效误差模型,通过Popov超稳定理论推导出稳定的参数自适应律。该方案能确保系统的输出渐近收敛到给定的参考信号,同时放宽了对最小逼近误差的限制,并且具有更广泛和灵活的参数调节形式。仿真结果验证了方案对非线性对象的有效性。  相似文献   

10.
In this paper, a new adaptive robust stabilization scheme is proposed for uncertain neutral time‐delay systems. No upper bounds on the uncertainties are assumed to be available. An update law is first used to find estimates of these upper bounds. A state‐feedback controller is then designed, which is shown to stabilize the underlying system under some mild conditions. The asymptotic stability of the state trajectories is proved using the Lyapunov–Krasovskii approach. An example is provided, which demonstrates the efficacy of the proposed adaptive control scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the problem of output feedback adaptive compensation tracking control for linear systems subject to external disturbances and actuator failures including loss of effectiveness faults and bias faults. The impact of actuator faults on the transient performance of systems can be mitigated predicated on the closed-loop reference model with an additional degrees of design freedom. Using the estimation information provided by the adaptive mechanism, an output feedback adaptive fault-tolerant control strategy is developed to track closed-loop reference model systems. It is shown that all the signals of the resulting closed-loop system are bounded. Finally, simulation results are given to demonstrate the effectiveness of the proposed fault-tolerant tracking control method.  相似文献   

12.
In this paper, based on an adaptive nonbackstepping design algorithm, we proposed a novel variable universe of discourse fuzzy control (VUDFC) approach for a class of single‐input–single‐output strict‐feedback nonlinear systems with unknown dead‐zone inputs. Firstly, we convert the form of system into a normal form on the basis of some new state variables and coordinate transformation; at the same time, state‐feedback control is changed to output‐feedback control. Secondly, we design observers to estimate the new unmeasurable states. Then, different from considering the traditional backstepping‐based fuzzy control scheme, we introduce a direct VUDFC scheme, which is mainly based on changing of contraction‐expansion factors to modify the universe of discourse online, and fuzzy rules can automatically reproduce to develop the control performance; thus, the size of initial rule base is greatly reduced. This new algorithm can alleviate tracking error, improve the accuracy of the system, and strengthen robustness. Lastly, according to Lyapunov theorem analysis, we prove that all the signals in the closed‐loop system can be guaranteed to be stable, and the output can track the reference signal very well. Simulation results illustrated the effectiveness of the proposed VUDFC approach.  相似文献   

13.
This paper addresses the issue of the adaptive output tracking control for switched nonlinear systems with uncertain parameters. The solvability of the tracking control problem for each subsystem is not necessary to hold. Individual update laws corresponding to different unknown parameters are adopted to reduce the conservativeness produced from the adoption of a common undated law. By means of the dual design of the adaptive controllers and a state‐dependent switching law using multiple storage functions technique, several conditions are obtained under which the adaptive output tracking control problem for switched nonlinear systems is solvable. Finally, an example shows the effectiveness of the proposed method.  相似文献   

14.
This paper develops an extended model reference adaptive control scheme to expand the capacity of state feedback state tracking adaptive control to handle the plant‐model matching uncertainties for single‐input LTI systems. The extended scheme is developed, using multiple reference model systems (only one of which is required to be able to match the controlled plant), and multiple controllers (which are updated from adaptive laws generated from multiple reference model systems based estimation errors), as two key features of such design to relax a plant‐model matching condition. A switching mechanism is constructed using those multiple estimation errors, capable of selecting the suitable control input from the multiple control signals, to achieve the desired system performance. An aircraft flight control example is presented to show the capacity of such design in relaxing a practical design condition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
An adaptive output feedback control scheme is developed for a class of nonlinear systems with uncertain nonlinearities, which are bounded by both static and dynamic functions of the system output, and with actuator failures whose failure time instants, patterns and values are unknown, as motivated from an aircraft flight control application. An adaptive backstepping control law using dynamic bounding is constructed to deal with unknown actuator failures as well as system parameter and dynamics uncertainties to guarantee desired system performance. Complete stability and performance analysis and illustrative simulation results of an application to aircraft flight control are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a new adaptive compensation control scheme is proposed for a class of nonlinear systems with unknown parameters and unknown actuator failures. The normal operation case and different failure cases of actuators are unified through a time‐varying model. By introducing a smooth function, an integrable auxiliary signal, and a bound estimation approach, the effect of failures is successfully compensated for, and the total number of failures is not restricted to be finite. It is shown that all closed‐loop signals are globally uniformly bounded, and the tracking error converges to zero asymptotically regardless of the possibly infinite number of actuator failures. An application to the longitudinal dynamic model of a twin otter aircraft is presented to illustrate the effectiveness of the proposed scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, a new passivity‐based control (PBC) scheme based on state feedback is proposed in order to solve tracking, regulation and stabilization problems for a class of multi‐input multi‐output (MIMO) nonlinear systems expressed in the normal form, with time‐invariant parameters and locally bounded reference weakly minimum phase. For the proposed control scheme two new different state feedbacks, one non‐adaptive for the case when the system parameters are assumed to be known and the other adaptive for the case of unknown parameters, are developed. For the adaptive case it is assumed that the unknown parameters appear linearly in the equations. Analysis of the transient behaviour of the proposed control schemes is presented through the simulation of two examples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a novel direct adaptive neural control approach is presented for a class of single‐input and single‐output strict‐feedback nonlinear systems with nonlinear uncertainties, unmodeled dynamics, and dynamic disturbances. Radial basis function neural networks are used to approximate the unknown and desired control signals, and a direct adaptive neural controller is constructed by combining the backstepping technique and the property of hyperbolic tangent function. It is shown that the proposed control scheme can guarantee that all signals in the closed‐loop system are semi‐globally uniformly ultimately bounded in mean square. The main advantage of this paper is that a novel adaptive neural control scheme with only one adaptive law is developed for uncertain strict‐feedback nonlinear systems with unmodeled dynamics. Simulation results are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Input–output linearization‐based adaptive reference tracking control of a low‐power gas turbine model is presented in this paper. The gas turbine is described by a third‐order nonlinear input‐affine state‐space model, where the manipulable input is the fuel mass flowrate and the controlled output is the rotational speed. The stability of the one‐dimensional zero dynamics of the controlled plant is investigated via phase diagrams. The input–output linearizing feedback is extended with a load torque estimator algorithm resulting in an adaptive feedback scheme. The tuning of controller parameters is performed considering three main design goals: appropriate settling time, robustness against environmental disturbances and model parameter uncertainties, and avoiding the saturation of the actuator. Simulations show that the closed‐loop system is robust with respect to the variations in uncertain model and environ‐mental parameters and its performance satisfies the defined requirements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This article develops a disturbance rejection control strategy using partial-state feedback model reference adaptive control for discrete-time uncertain systems with unknown input disturbances. Adaptive control schemes are proposed for constant disturbances, sinusoidal disturbances, and generic bounded disturbances. The partial-state feedback control is designed based on measurable signals and the parameterization method to counteract the effect of disturbances. The plant-model output matching condition is established. The developed control law is more flexible for applications and has a more concise structure than output feedback control. Additionally, closed-loop stability and asymptotic output tracking are derived. The effectiveness and the feasibility of partial-state feedback disturbance rejection control are verified by simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号