首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A new discrete‐time actuator failure compensation control scheme is developed, using a multiple‐model adaptive control approach which has the capacity to achieve faster and more accurate compensation of failure uncertainties. An individual adaptive system, for each possible failure pattern in a failure pattern set of interest for compensation, is designed using an indirect model reference adaptive control scheme for actuator failure compensation. A multiple‐model control switching mechanism for discrete‐time systems is set up by finding the minimal performance index to select the most appropriate control law. The performance indices are based on the adaptive estimation errors of individual parameterized systems with actuator failures. Simulation results from an aircraft flight control system example are presented to show the desired closed‐loop system stability and tracking performance despite the presence of uncertain actuator failures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a new adaptive compensation control scheme is proposed for a class of nonlinear systems with unknown parameters and unknown actuator failures. The normal operation case and different failure cases of actuators are unified through a time‐varying model. By introducing a smooth function, an integrable auxiliary signal, and a bound estimation approach, the effect of failures is successfully compensated for, and the total number of failures is not restricted to be finite. It is shown that all closed‐loop signals are globally uniformly bounded, and the tracking error converges to zero asymptotically regardless of the possibly infinite number of actuator failures. An application to the longitudinal dynamic model of a twin otter aircraft is presented to illustrate the effectiveness of the proposed scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This article develops a new framework of adaptive actuator failure compensation control for cooperative manipulator systems with parameter uncertainties in addition to actuator failures, and designs and analyzes effective actuator failure compensation schemes for such robotic systems. The new adaptive control design uses an integration of multiple individual failure compensators and direct adaptation to handle various types of uncertainties in such robotic systems. The design can also be used for concurrent actuator failure cases, to expand the capability of adaptive actuator failure compensation. With a complete proof and performance analysis, it is shown that the proposed control scheme guarantees the desired closed-loop stability and asymptotic output tracking, despite actuator failures whose patterns, time instants and values are all unknown. Simulation results of a benchmark cooperative manipulator system are presented to verify the desired control performance of the system with both typical constant and square-wave actuator failure signals.  相似文献   

4.
In this article, adaptive compensation designs are developed for nonlinear systems with uncertainties from the system functions and persistent actuator failures of characterizations that (i) some unknown system inputs are stuck at some unknown fixed or varying values at unknown time instants and (ii) the failure pattern always switches from one to another and the switching does not stop. Such a controlled plant is described by an uncertain time-varying nonlinear system, and some robust adaptive feedback linearization based failure compensation results are studied for closed-loop system stabilization and bounded output tracking for some specific conditions. To improve the tracking performance in the presence of persistent actuator failures, a new adaptive control scheme is developed, using the failure indicator function which contains the failure pattern and failure time in the formulation. Detailed stability and tracking performance are shown. Simulation results are shown to verify the effectiveness of the proposed adaptive actuator failure compensation method.  相似文献   

5.
An adaptive output feedback control scheme is developed for a class of nonlinear systems with uncertain nonlinearities, which are bounded by both static and dynamic functions of the system output, and with actuator failures whose failure time instants, patterns and values are unknown, as motivated from an aircraft flight control application. An adaptive backstepping control law using dynamic bounding is constructed to deal with unknown actuator failures as well as system parameter and dynamics uncertainties to guarantee desired system performance. Complete stability and performance analysis and illustrative simulation results of an application to aircraft flight control are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses a new adaptive output tracking problem in the presence of uncertain plant dynamics and uncertain sensor failures. A new unified nominal state‐feedback control law is developed to deal with various sensor failures, which is directly constructed by state sensor outputs. Such a new state‐feedback compensation control law is able to ensure the desired plant‐model matching properties under different failure patterns. Based on the nominal compensation control design, a new adaptive compensation control scheme is proposed, which guarantees closed‐loop signal boundedness and asymptotic output tracking. The new adaptive compensation scheme not only expands the sensor failures types that the system could tolerate but also avoids some signal processing procedures that the traditional fault‐tolerant control techniques are forced to encounter. A complete stability analysis and a representative simulation study are conducted to evaluate the effectiveness of the proposed adaptive compensation control scheme.  相似文献   

7.
In this paper, an adaptive dynamic surface control approach is developed for a class of multi‐input multi‐output nonlinear systems with unknown nonlinearities, bounded time‐varying state delays, and in the presence of time‐varying actuator failures. The type of the considered actuator failure is that some unknown inputs may be stuck at some time‐varying values where the values, times, and patterns of the failures are unknown. The considered actuator failure can cover most failures that may occur in actuators of the systems. With the help of neural networks to approximate the unknown nonlinear functions and combining the dynamic surface control approach with the backstepping design method, a novel control approach is constructed. The proposed design method does not require a priori knowledge of the bounds of the unknown time delays and actuator failures. The boundedness of all the closed‐loop signals is guaranteed, and the tracking errors are proved to converge to a small neighborhood of the origin. The proposed approach is employed for a double inverted pendulums benchmark as well as a chemical reactor system. The simulation results show the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we solve the problem of output tracking for linear uncertain systems in the presence of unknown actuator failures using discontinuous projection‐based output feedback adaptive robust control (ARC). The faulty actuators are characterized as unknown inputs stuck at unknown values experiencing bounded disturbance and actuators losing effectiveness at unknown instants of time. Many existing techniques to solve this problem use model reference adaptive control (MRAC), which may not be well suited for handling various disturbances and modeling errors inherent to any realistic system model. Robust control‐based fault‐tolerant schemes have guaranteed transient performance and are capable of dealing with modeling errors to certain degrees. But, the steady‐state tracking accuracy of robust controllers, e.g. sliding mode controller, is limited. In comparison, the backstepping‐based output feedback adaptive robust fault‐tolerant control (ARFTC) strategy presented here can effectively deal with such uncertainties and overcome the drawbacks of individual adaptive and robust controls. Comparative simulation studies are performed on a linearized Boeing 747 model, which shows the effectiveness of the proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, an adaptive control approach is designed for compensating the faults in the actuators of chaotic systems and maintaining the acceptable system stability. We propose a state‐feedback model reference adaptive control scheme for unknown chaotic multi‐input systems. Only the dimensions of the chaotic systems are required to be known. Based on Lyapunov stability theory, new adaptive control laws are synthesized to accommodate actuator failures and system nonlinearities. An illustrative example is studied. The simulation results show the effectiveness of the design method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we develop a new decentralized retrofit adaptive fault‐tolerant control design for a class of nonlinear models arising in flight control. The proposed adaptive fault‐tolerant controller is designed to accommodate loss‐of‐effectiveness (LoE) failures in flight control actuators and achieve accurate estimation of failure‐related parameters. The design is based on local estimation of LoE parameters and generation of local retrofit control signals to accommodate the failures. Using state‐dependent closed‐loop estimation errors, we show the overall system to be stable and demonstrate the tracking error to converge to zero asymptotically for any combination of actuator failures. Through computer simulation of F/A‐18 aircraft under actuator LoE failures, the proposed approach is also shown to achieve better parameter estimation performance compared to the fully centralized design and the design employing local observers and a centralized adaptive controller. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the adaptive back‐stepping controller is investigated for a class of strict‐feedback systems using the command filter technique. Adaptive laws are designed for updating the controller parameters when both the plant parameters and actuator‐failure parameters are unknown. Furthermore, the auxiliary dynamics is developed to deal with the input constraints. Closed‐loop stability and asymptotic‐state tracking are ensured. The method is applied to the longitudinal dynamics of a generic hypersonic aircraft in the presence of actuator faults and input constraints. Based on the parameter estimation, the command‐filtered adaptive back‐stepping control is presented. Simulation results on the control‐oriented model show that the proposed approach achieves good tracking performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a neural network (NN)‐based adaptive control of piezoelectric actuators with unknown hysteresis. Based on the classical Duhem model described by a differential equation, the explicit solution to the equation is explored and a new hysteresis model is constructed as a linear model in series with a piecewise continuous nonlinear function. An NN‐based dynamic pre‐inversion compensator is designed to cancel out the effect of the hysteresis. With the incorporation of the pre‐inversion compensator, an adaptive control scheme is proposed to have the position of the piezoelectric actuator track the desired trajectory. This paper has three distinct features. First, it applies the NN to online approximate complicated piecewise continuous unknown nonlinear functions in the explicit solution to Duhem model. Second, an observer is designed to estimate the output of hysteresis of piezoelectric actuator based on the system input and output. Third, the stability of the controlled piezoelectric actuator with the observer is guaranteed. Simulation results for a practical system validate the effectiveness of the proposed method in this paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This work deals with the problem of a model reference tracking based on the design of an active fault tolerant control for linear parameter‐varying systems affected by actuator faults and unknown inputs. Linear parameter‐varying systems are described by a polytopic representation with measurable gain scheduling functions. The main contribution is to design an active fault tolerant controller whose control law is described by an adaptive proportional integral structure. This one requires 3 types of online information, which are reference outputs, measured real outputs, and the fault estimation provided by a model reference, sensors, and an adaptive polytopic observer, respectively. These types of information are used to reconfigure the designed controller, which is able to compensate the fault effects and to make the closed‐loop system able to track reference outputs in spite of the presence of actuator faults and disturbances. The controller and the observer gains are obtained by solving a set of linear matrices inequalities. Performances of the proposed method are compared to another previous method to underline the relevant results.  相似文献   

14.
This paper investigates the robust adaptive fault‐tolerant control problem for state‐constrained continuous‐time linear systems with parameter uncertainties, external disturbances, and actuator faults including stuck, outage, and loss of effectiveness. It is assumed that the knowledge of the system matrices, as well as the upper bounds of the disturbances and faults, is unknown. By incorporating a barrier‐function like term into the Lyapunov function design, a novel model‐free fault‐tolerant control scheme is proposed in a parameter‐dependent form, and the state constraint requirements are guaranteed. The time‐varying parameters are adjusted online based on an adaptive method to prevent the states from violating the constraints and compensate automatically the uncertainties, disturbances, and actuator faults. The time‐invariant parameters solved by using data‐based policy iteration algorithm are introduced for helping to stabilize the system. Furthermore, it is shown that the states converge asymptotically to zero without transgression of the constraints and all signals in the resulting closed‐loop system are uniformly bounded. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents 2‐novel linear matrix inequality (LMI)‐based adaptive output feedback fault‐tolerant control strategies for the class of nonlinear Lipschitz systems in the presence of bounded matched or mismatched disturbances and simultaneous occurrence of actuator faults, including failure, loss of effectiveness, and stuck. The constructive algorithms based on LMI with creatively using Lyapunov stability theory and without the need for an explicit information about mode of actuator faults or fault detection and isolation mechanism are developed for online tuning of adaptive and fixed output‐feedback gains to stabilize the closed‐loop control system asymptotically. The proposed controllers guarantee to compensate actuator faults effects and to attenuate disturbance effects. The resulting control methods have simpler structure, as compared with most existing recent methods and more suitable for practical systems. The merits of the proposed fault‐tolerant control scheme have been verified by the simulation on nonlinear Boeing 747 lateral motion dynamic model subjected to actuator faults.  相似文献   

16.
An adaptive enhanced sliding mode control (AESMC) scheme for the position tracking control of permanent magnet synchronous motor drives is proposed in this paper. The AESMC system is composed of three controllers: the adaptive model compensation controller, which is used to compensate for the parameter perturbations to achieve perfect tracking; the hitting controller, which is considered to attenuate the effect of external load disturbance and the compensation error; and the robust feedback controller, which is used to enhance the stability of the closed‐loop system and to improve the transient performance while the AESMC is in the learning process. Moreover, the bound of the lumped disturbance is assumed to be unknown, and an adaptive mechanism is investigated to estimate this bound. Simulation results show that the proposed AESMC scheme has a favorable tracking performance in spite of various model uncertainties. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, neural networks (NNs) and adaptive robust control (ARC) design philosophy are integrated to design performance‐oriented control laws for a class of single‐input–single‐output (SISO) nth‐order non‐ linear systems. Both repeatable (or state dependent) unknown non‐linearities and non‐repeatable unknown non‐linearities such as external disturbances are considered. In addition, unknown non‐linearities can exist in the control input channel as well. All unknown but repeatable non‐linear functions are approximated by outputs of multi‐layer neural networks to achieve a better model compensation for an improved performance. All NN weights are tuned on‐line with no prior training needed. In order to avoid the possible divergence of the on‐line tuning of neural network, discontinuous projection method with fictitious bounds is used in the NN weight adjusting laws to make sure that all NN weights are tuned within a prescribed range. By doing so, even in the presence of approximation error and non‐repeatable non‐linearities such as disturbances, a controlled learning is achieved and the possible destabilizing effect of on‐line tuning of NN weights is avoided. Certain robust control terms are constructed to attenuate various model uncertainties effectively for a guaranteed output tracking transient performance and a guaranteed final tracking accuracy in general. In addition, if the unknown repeatable model uncertainties are in the functional range of the neural networks and the ideal weights fall within the prescribed range, asymptotic output tracking is also achieved to retain the perfect learning capability of neural networks in the ideal situation. The proposed neural network adaptive control (NNARC) strategy is then applied to the precision motion control of a linear motor drive system to help to realize the high‐performance potential of such a drive technology. NN is employed to compensate for the effects of the lumped unknown non‐linearities due to the position dependent friction and electro‐magnetic ripple forces. Comparative experiments verify the high‐performance nature of the proposed NNARC. With an encoder resolution of 1 µm, for a low‐speed back‐and‐forth movement, the position tracking error is kept within ±2 µm during the most execution time while the maximum tracking error during the entire run is kept within ±5.6 µm. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the problem of output feedback adaptive compensation tracking control for linear systems subject to external disturbances and actuator failures including loss of effectiveness faults and bias faults. The impact of actuator faults on the transient performance of systems can be mitigated predicated on the closed-loop reference model with an additional degrees of design freedom. Using the estimation information provided by the adaptive mechanism, an output feedback adaptive fault-tolerant control strategy is developed to track closed-loop reference model systems. It is shown that all the signals of the resulting closed-loop system are bounded. Finally, simulation results are given to demonstrate the effectiveness of the proposed fault-tolerant tracking control method.  相似文献   

19.
In this paper, a nonlinear hierarchical adaptive control framework is proposed for the control of a quad tilt‐wing unmanned aerial vehicle (UAV). An outer loop model reference adaptive controller with robustifying terms creates required forces to be able to move the UAV on a reference trajectory, and an inner loop nonlinear adaptive controller realizes the required attitude angles to achieve these forces. A rigorous stability analysis is provided showing the boundedness of all the signals in this cascaded controller structure. The development and the stability analysis of the controller do not use any linearizations and use the full nonlinear UAV dynamics. The controller is implemented on a high‐fidelity nonlinear tilt‐wing quadrotor model in the presence of uncertainties, wind disturbances, and measurement noise as well as actuator and structural failures. In this work, in addition to earlier modeling studies, the effect of wing‐angle variations, actuator failures, and structural failures and their effect on the center of gravity of the UAV are rigorously and systematically investigated and reflected in the model. Simulation results showing the performance of the proposed controller and a comparison with the fixed controller used in earlier studies are presented in the paper.  相似文献   

20.
In this paper, we consider a class of non‐linear systems in which a set of constant parameters is unknown and some state variables are not available for measurement. For such systems we provide a constructive procedure for the solution of the global adaptive tracking problem with dynamic partial state feedback. We illustrate an application of the control strategy to the adaptive non‐linear friction compensation of a DC motor servomechanism. We improve previous results in tow directions: we allow for a subset of the unmeasurable states to enter in a system non‐linearly; we consider systems which are linearly parametrized with respect to a set of unknown constant parameters. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号