首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
《Ceramics International》2017,43(7):5715-5722
In this study, we report the electrical conductivity and thermal properties of Al2O3-SiC-CNT hybrid nanocomposites processed via ball milling (BM) and spark plasma sintering (SPS). The initial powders and consolidated samples were characterized using transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM), respectively. A multifunction calibrator and a high-resolution digital multimeter were used to measure the electrical conductivity. The thermal properties were measured using a thermal constants analyser. The SiC and CNT-reinforced alumina hybrid nanocomposites exhibited a significant increase in their room-temperature electrical conductivity, which made them suitable for electrical discharge machining. The Al2O3-5SiC-2CNTs had a high electrical conductivity value of 8.85 S/m compared to a low value of 6.87×10−10 S/m for the monolithic alumina. The addition of SiC and CNTs to alumina decreased its room-temperature thermal properties. The increase in temperature resulted in a decrease in the thermal conductivity and thermal diffusivity but an increase in the specific heat of the monolithic alumina and the hybrid nanocomposites. These properties were correlated with the microstructure, and possible transport mechanisms were discussed.  相似文献   

2.
The thermomechanical behavior of micro/nano-alumina (Al2O3) ceramics reinforced with 1-5 wt.% of acid-treated oil fly ash (OFA) was investigated. Composites were sintered using spark plasma sintering (SPS) technique at a temperature of 1400°C by applying a constant uniaxial pressure of 50 MPa. It was evaluated that the fracture toughness of micro- and nanosized composites improved in contrast with the monolithic alumina. Highest fracture toughness value of 4.85 MPam1/2 was measured for the nanosized composite reinforced with 5 wt.% OFA. The thermal conductivity of the composites (nano-/microsized) decreased with the increase in temperature. However, the addition of OFA (1-5 wt.%) in nanosized alumina enhanced the thermal conductivity at an evaluated temperature. Furthermore, a minimum thermal expansion value of 6.17 ppm*K−1 was measured for nanosized Al2O3/5 wt.% OFA composite. Microstructural characterization of Al2O3-OFA composites was done by x-ray diffraction and Raman spectroscopy. Oil fly ash particles were seen to be well dispersed within the alumina matrix. Moreover, the comparative analysis of the nano-/microsized Al2O3/OFA composites shows that the mechanical and thermal properties were improved in nanosized alumina composites.  相似文献   

3.
Dry ceramic block-on-steel ring wear tests were performed at high loads in several Al2O3/20 vol.% SiC composites as a function of the SiC grain size, which ranged from 0.2 to 4.5 μm in d50. The wear resistance of the monolithic alumina was radically improved by the addition of the SiC particles, reducing down to one order of magnitude wear rate. Two different behaviours were identified according to the microstructural observations on the worm surfaces: intergranular fracture and grain pull-out in the monolithic Al2O3, and plastic deformation and surface polishing in the composites. The wear resistance of the Al2O3/SiC composites increased with the SiC grain size due to their fracture toughness enhancement.  相似文献   

4.
In this study, the influence of different weight percentages of alumina oxide (Al2O3) and silicon carbide (SiC) reinforcement on the mechanical properties of Polyamide (PA6) composite is investigated. Test specimens of pure PA6, 85 wt% PA6 + 10 wt% Al2O3 + 5 wt% SiC and 85 wt% PA6 +10 wt% SiC + 5 wt% Al2O3 are prepared using an injection molding machine. To investigate the mechanical behaviors tensile test, impact test, flexural test, and hardness test were conducted in accordance with ASTM standards. Experimental results indicated that the mechanical properties, such as tensile, impact, hardness, and flexural strength were considerably higher than the pure PA6. The tensile fracture morphology and the characterization of PA6 hybrid composites were observed by scanning electron microscope and Fourier transform infrared spectroscopic method. Further, thermogravimetric analysis confirms the thermal stability of PA6 hybrid composites. The reinforcing effects of Al2O3 and SiC on the mechanical properties of PA6 hybrid composites were compared and interpreted in this paper. Improved mechanical and thermal characteristics were observed by the addition of small amount of Al2O3 and SiC simultaneously reinforced with the pure PA6.  相似文献   

5.
Al2O3/SiC composites containing different volume fractions (3, 5, 10, 15, and 20 vol%) of SiC particles were produced by conventional mixing of alumina and silicon carbide powders, followed by hot pressing at 1740 °C for 1 h under the pressure of 30 MPa in the atmosphere of Ar. The influence of the volume fraction and size of SiC particles (two different powders with the mean size of SiC particles 40 and 200 nm were used), and final microstructure on mechanical properties and dry sliding wear behaviour in ball-on-disc arrangement were evaluated. The properties of the composites were related to a monolithic Al2O3 reference. Microstructure of the composites was significantly affected by the volume fraction of added SiC, with the mean size of alumina matrix grains decreasing with increasing content of SiC particles. The addition of SiC moderately improved the Vickers hardness. Fracture toughness was lower with respect to monolithic Al2O3, irrespective of the volume fraction and size of SiC particles. Al2O3/SiC nanocomposites conferred significant benefits in terms of wear behaviour under the conditions of mild dry sliding wear. Wear resistance of the alumina reference was poor, especially at the applied load of 50 N. The wear rates of composites markedly decreased with increasing volume fraction of SiC. Wear of the composites was also influenced by the material of counterparts, especially their hardness, with softer counterparts resulting in lower wear rates. All composites wore by a combination of grain pull-out with plastic deformation associated with grooving and small contribution of mechanical wear (micro-fracture). No influence of SiC particle size on wear rate or mechanism of wear was observed in the materials with identical volume fractions of SiC.  相似文献   

6.
The aim of the present contribution is the processing and characterization of fiber-reinforced and layered alumina - graphene composites, prepared by the combination of electrospinning, calcination, chemical vapor deposition (CVD) and spark plasma sintering (SPS). The fiber-reinforced composite contains homogenously distributed graphene-coated polycrystalline alumina microfibers in the Al2O3 matrix. The layered composites contain Al2O3 layers and layers of graphene-coated alumina microfibers or layers of graphene-coated alumina grains of submicron size. The systems with high density, 99.5–99.9 %, show different grain sizes of Al2O3 in their constituents, changing from 0.08 to 1.9 μm in comparison to the monolithic alumina with the average grain size of 2.6 μm. The composites and their layers show increased electrical conductivity, hardness, and fracture toughness by approximately five orders of magnitude, 31 %, and 8%, respectively, in comparison to the monolithic alumina due to the presence of graphene layers, small grain-sized alumina, and microfibers in the composites.  相似文献   

7.
《Ceramics International》2020,46(10):16008-16019
The electrical conductivity of alumina-silicon carbide (Al2O3–SiC) and alumina-multiwalled carbon nanotube (Al2O3-MWCNT) nanocomposites prepared by sonication and ball milling and then consolidated by spark plasma sintering (SPS) is reported. The effects of the nanophase (SiC and MWCNTs) and SPS processing temperature on the densification, microstructure, and functional properties were studied. The microstructure of the fabricated nanocomposites was investigated using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The phase evolution was determined using X-ray diffraction (XRD). The room-temperature direct current (DC) electrical conductivity of the monolithic alumina and nanocomposites was determined using the four-point probe technique. The EDS mapping results showed a homogenous distribution of the nanophases (SiC and MWCNTs) in the corresponding alumina matrix. The room-temperature DC electrical conductivity of monolithic alumina was measured to be 6.78 × 10−10 S/m, while the maximum electrical conductivities of the alumina-10 wt%SiC and alumina-2wt%MWCNT samples were 2.65 × 10−5 S/m and 101.118 S/m, respectively. The electrical conductivity increased with increasing nanophase concentration and SPS temperature. The mechanism of electrical conduction and the disparity in the electrical performance of the two investigated nanocomposite systems (alumina-SiC and alumina-MWCNT) are clearly described.  相似文献   

8.
Aluminum oxide (Al2O3) particles and silicon carbide (SiC) whiskers improved the thermal conductivity of high-density polyethylene (HDPE). To improve the dispersion of inorganic fillers in the matrix, 5 wt% of maleic anhydride-modified polyethylene was added into HDPE as a compatibilizer, and the hybrid matrix was denoted as mHDPE. The thermal conductivity, heat resistance, and tensile properties of resulting HDPE composites were characterized. The results showed that the thermal conductivity reached its maximum value of 0.8876 W/(m K) at 1/4 weight ratio of Al2O3/SiC, which was 110.3, 54.8, and 8.8% higher than that of pure HDPE, mHDPE/Al2O3, and mHDPE/SiC composites, in the order given, indicating that hybrid fillers have synergistic effect on the thermal conductivity of HDPE composites. Moreover, they also have a synergistic effect on the heat resistance and Young’s modulus. As the SiC content increases, the heat resistance of the composites increases at first and then falls, and the maximum VST is reached at an Al2O3/SiC weight ratio of 3/2, which is 5.4 °C higher than that of HDPE. The maximum Young’s modulus of the composites (1160 MPa) is obtained at an Al2O3/SiC weight ratio of 1/4, and the yield strength increases gradually as the SiC whiskers’ content increases.  相似文献   

9.
《Ceramics International》2020,46(13):20810-20818
Herein, oriented boron nitride (BN)/alumina (Al2O3)/polydimethylsiloxane (PDMS) composites were obtained by filler orientation due to the shear-inducing effect via 3-D printing. The oriented BN platelets acted as a rapid highway for heat transfer in the matrix and resulted in a significant increase in the thermal conductivity along the orientation direction. Extra addition of spherical Al2O3 enhanced the fillers networks and resulted in the dramatic growth of slurry viscosity. This, together with filler orientation induced the synergism and provided large increases in the thermal conductivity. A high orientation degree of 90.65% and in-plane thermal conductivity of 3.64 W/(m∙K) were realized in the composites with oriented 35 wt% BN and 30 wt% Al2O3 hybrid fillers. We attributed the influence of filler orientation and hybrid fillers on the thermal conductivity to the decrease of thermal interface resistance of composites and proposed possible theoretical models for the thermal conductivity enhancement mechanisms.  相似文献   

10.
The hot pressing process of monolithic Al2O3 and Al2O3-SiC composites with 0-25 wt% of submicrometer silicon carbide was done in this paper. The presence of SiC particles prohibited the grain growth of the Al2O3 matrix during sintering at the temperatures of 1450°C and 1550°C for 1 h and under the pressure of 30 MPa in vacuum. The effect of SiC reinforcement on the mechanical properties of composite specimens like fracture toughness, flexural strength, and hardness was discussed. The results showed that the maximum values of fracture toughness (5.9 ± 0.5 MPa.m1/2) and hardness (20.8 ± 0.4 GPa) were obtained for the Al2O3-5 wt% SiC composite specimens. The significant improvement in fracture toughness of composite specimens in comparison with the monolithic alumina (3.1 ± 0.4 MPa.m1/2) could be attributed to crack deflection as one of the toughening mechanisms with regard to the presence of SiC particles. In addition, the flexural strength was improved by increasing SiC value up to 25 wt% and reached 395 ± 1.4 MPa. The scanning electron microscopy (SEM) observations verified that the increasing of flexural strength was related to the fine-grained microstructure.  相似文献   

11.
Fracture resistance of SiC‐whiskers‐reinforced Al2O3‐matrix composite under thermal shock was examined. Equibiaxial tensile thermal stress in the composite was significantly reduced before fracture, because the whiskers made percolation paths that increase heat flux and thereby reduced the temperature gradient. The thermal‐shock fracture resistance (R′) of the composite is thus much higher than that of monolithic Al2O3. Thermal‐shock damage resistance (R″″) was estimated from the thermal‐shock stress when a surface crack propagates. R″″ of the composite is also much higher than that of monolithic Al2O3 owing to an increment of work‐of‐fracture due to crack‐face bridging of the whiskers.  相似文献   

12.
In this study, dense SiC ceramics were fabricated at 1650?1750 °C for 10?60 min by spark plasma sintering (SPS) using 3?10 wt.% Al2O3-Y2O3 as sintering additives. Effects of sintering temperature, sintering additive content and holding time on microstructure as well as correlations between microstructure and thermal conductivity were investigated. An increase in the sintering temperature promotes grain growth. Extending holding time has little influence on grain size but results in formation of continuous network of sintering additive, which increases interfacial thermal resistance and thus decreases thermal conductivity. For SiC ceramics composed of continuous SiC matrix and discrete secondary phase (yttrium aluminum garnet, YAG), an increase in the sintering additive content results in smaller grain size and lower thermal conductivity. The lower thermal conductivity of the SiC ceramic with higher sintering additive content is mainly due to the smaller grain size rather than the low intrinsic thermal conductivity of YAG.  相似文献   

13.
《Ceramics International》2016,42(8):9448-9454
A dense alumina fiber reinforced silicon carbide matrix composites (Al2O3/SiC) modified with Ti3Si(Al)C2 were prepared by a joint process of chemical vapor infiltration, slurry infiltration and reactive melt infiltration. The conductive Ti3Si(Al)C2 phase introduced into the matrix modified the microstructure of Al2O3/SiC. The refined microstructure was composed of conductive phase, semiconductive phase and insulating phase, which led to admirable electromagnetic shielding properties. Electromagnetic interference shielding effectiveness (EMI SE) of Al2O3/SiC and Ti3Si(Al)C2 modified Al2O3/SiC were investigated over the frequency range of 8.2–12.4 GHz. The EMI SE of Al2O3/SiC-Ti3Si(Al)C2 exhibited a significant increase from 27.6 to 42.1 dB compared with that of Al2O3/SiC. The reflection and absorption shielding effectiveness increased simultaneously with the increase of the electrical conductivity.  相似文献   

14.
《Ceramics International》2021,47(20):28252-28259
Oxide ceramics are considered as promising high temperature solar absorber materials. The major aim of this work is the development of a new solar absorber material with promising characteristics, high efficiency and low-cost processing. Hence, this work provides a comparative and inclusive study of densification behavior, microstructure features, thermal emissivity and thermal conductivity values of the two new high temperature solar absorbers of ZrO2/Fe2O3 and Al2O3/CuO ceramics. Ceramic composites of ZrO2/(10–30 wt%) Fe2O3 and Al2O3/(10–30 wt%) CuO were prepared by pressureless sintering method at a temperature of 1700 °C/2hrs. Identification of the solar to thermal efficiency of the composites was evaluated in terms of their measured thermal emissivity. Thermal efficiency and heat transfer homogeneity were investigated in terms of thermal conductivity and diffusivity measurement. The results showed that both composites exhibited comparable densification behavior, homogenous and harmonious microstructure. However, Al2O3/10 wt% CuO composite showed higher thermal and solar to thermal efficiencies than ZrO2/Fe2O3 composites. It gave the lowest and the best thermal emissivity of 0.561 and the highest thermal conductivity of 15.4 W/m. K. These values proved to be the best amongst all those of the most known solar absorber materials made from the expensive SiC and AlN ceramics. Thus, Al2O3/CuO composites have succeeded in obtaining outstanding properties at a much lower price than its other competitive materials. These results may strongly identify Al2O3/CuO composites as promising high-temperature solar absorber materials instead of ZrO2 and the other carbide and nitride ceramics.  相似文献   

15.
The response of Al2O3, Al2O3–SiC–(C) and Al2O3–C nanocomposites to grinding was investigated in terms of changes of quality of ground surfaces and of the weight losses with time. The study used monolithic polycrystalline aluminas as references, and alumina-based composites with nanosized SiC and C inclusions and with alumina matrix grain size varying from submicrometer to approximately 4 μm. The studied materials can be roughly divided into two groups. Materials with submicrometer alumina matrix grains (Group 1) wear predominantly by plastic deformation and grooving. Coarse-grained materials (Group 2) wear by mixed wear mechanism involving crack initiation and interlinking accompanied by grain pull-out, plastic deformation and grooving. The wear rate of composites increases with increasing volume fraction of SiC. The Group 2 materials wear much faster then those with submicron microstructure. In all cases (with one exception) the wear resistance of composites was higher than that of pure aluminas of comparable grain sizes used as reference materials.  相似文献   

16.
Alumina (Al2O3) ceramic composites reinforced with graphene platelets (GPLs) were prepared using Spark Plasma Sintering. The effects of GPLs on the microstructure and mechanical properties of the Al2O3 based ceramic composites were investigated. The results show that GPLs are well dispersed in the ceramic matrix. However, overlapping of GPLs and porosity within ceramics are observed. The flexural strength and fracture toughness of the GPL-reinforced Al2O3 ceramic composites are significantly higher than that of monolithic Al2O3 samples. A 30.75% increase in flexural strength and a 27.20% increase in fracture toughness for the Al2O3ceramic composites have been achieved by adding GPLs. The toughening mechanisms, such as pull-out and crack deflection induced by GPLs are observed and discussed.  相似文献   

17.
The Al2O3/SiC nanocomposites containing 3–8 vol.% SiC were prepared through infiltration and in situ thermal decomposition of a preceramic polymer SiC precursor (poly(allyl)carbosilane) in pre-sintered alumina matrix. The volume fraction of SiC, and the microstructure of composites were adjusted by concentration of the polymer solution, and by the conditions of pyrolysis and sintering. The specimens were densified by pressureless sintering at temperatures between 1550 and 1850 °C in flowing argon. The use of powder bed producing SiO, CO and other volatile species suppressed decomposition reactions in the composites and was vital for their successful densification. The experimental results are discussed against thermodynamic analysis of the system Al2O3/SiC/SiO2 in an inert Ar atmosphere.  相似文献   

18.
The thermal conductivity of hot-pressed Al2O3/SiC platelet composites is determined as a function of the platelet content, from 0 to 30 vol.% of SiC. Existing heat conduction models are employed to discuss the experimental data. Data agree with the presence of an interfacial thermal resistance at the Al2O3/SiC grain boundaries, which precludes the effect of percolation on the thermal conductivity for the higher percentage of SiC platelets. The observed orientation effect on the thermal conductivity due to an alignment of the platelets is also modelled using the Hasselman's approach. The thermal conductivity of the SiC platelets is calculated from the effective thermal conductivity of the composites.  相似文献   

19.
The effect of stress at grain boundaries on the mechanical properties of alumina ceramics was investigated. Residual stresses at grain-boundaries resulted from a mismatch in thermal expansion coefficient (TEC) between the alumina matrix and the glass-phase segregated at grain-boundaries. The BaO–Al2O3–SiO2 (BAS) system and the Li2O–Al2O3–SiO2 (LAS) system glasses were chosen to have a higher and a lower TEC than that of alumina, respectively, resulting in microscopic tensile and compressive stresses at grain-boundaries for Al2O3/BAS and Al2O3/LAS composites, respectively. The experimental results showed that the Al2O3/BAS composite fractured intergranularly with a fracture toughness higher than that of monolithic alumina. On the other hand, the Al2O3/LAS composite experienced transgranular fracture and high bending strength despite its low toughness. Both composites could be sintered to full density at 1500°C for 2 h due to the presence of a liquid phase. It was concluded that strengthening and toughening of alumina ceramics could be tailored by designing their grain-boundary microstresses.  相似文献   

20.
In this work, a multi-contact Al2O3@AgNPs hybrid thermal conductive filler was synthesized by in-situ growth method to fill high thermal conductivity polydimethylsiloxane (PDMS)-based composites to prepare TIMs. And the thermal conductivity, electrical conductivity, and mechanical properties of the composite materials were studied. During the synthesis process of the multi-contact hybrid filler, different concentrations of silver ions were reduced to generate silver nanoparticles and attached to the surface of Al2O3. Al2O3@AgNPs/PDMS thermally conductive composites were prepared by changing the filler addition. Using SEM, XPS, and XRD is used to characterize the morphology and chemical composition of Al2O3@AgNPs hybrid filler. The thermal conductivity of PDMS-based composites with different AgNPs content under 70 wt% filler loading was studied. The results show that the thermal conductivity of PDMS-based composites filled with 7owt%Al2O3@3AgNPs/PDMS multi-contact hybrid filler is 0.67 W/m·K, which is 3.72 times that of pure PDMS, and is higher than that of unmodified Al2O3 with the same addition amount. /PDMS composite material has a high thermal conductivity of 24%. This work provides a new idea for the design and manufacture of high thermal conductivity hybrid fillers for TIMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号