首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to improve the power generation efficiency of fuel cell systems employing liquid fuels, a hybrid system consisting of solid oxide fuel cell (SOFC) and proton exchange membrane fuel cell (PEMFC) is proposed. Utilize the high temperature heat generated by SOFC to reform as much methanol as possible to improve the overall energy efficiency of the system. When SOFC has a stable output of 100 kW, the amount of hydrogen after reforming is changed by changing the methanol flow rate. Three hybrid systems are proposed to compare and select the best system process suitable for different situations. The results show that the combined combustion system has the highest power generation, which can reach 350 kW and the total electrical efficiency is 57%. When the power of the tail gas preheating system is 160 kW, the electrical efficiency can reach 75%. The PEM water preheating system has the most balanced performance, with the electric power of 300 kW and the efficiency of 66%.  相似文献   

2.
Recently, Unmanned Aerial Vehicles (UAVs) with propulsion systems based on fuel cells have led to increased flight endurance and fuel economy. However, due to the limited operation of propulsion systems designed with alone fuel cells, the integration of fuel cells with other power generators can be used. This article attempts to provide a conceptual model of a new solid oxide fuel cell based-propulsion system that is cascaded with thermionic and thermoelectric generators. The fuel cell produces power and heat by receiving hydrogen fuel and oxidant. The required heat of thermionic and thermoelectric generators is supplied by the dissipative heat of the fuel cell and the dissipated heat of thermionic, respectively. The objective of this article is to determine the necessary electricity of a small UAV under mission profile. The conceptual design and structure of the proposed propulsion system (for use in a small drone) is new. In addition, the results presented do not correspond to the same literature. Results showed that the proposed propulsion system is capable of producing 481.3 W of power with an overall efficiency of 46.7%. In addition, UAV needs 1110.3 W of electricity under the desired mission profile. Five various sizing of the propulsion system to provide the necessary electricity of an UAV are discussed.  相似文献   

3.
This study proposes a molten carbonate fuel cell (MCFC)-based hybrid propulsion system for a liquefied hydrogen tanker. This system consists of a molten carbonate fuel cell and a bottoming cycle. Gas turbine and steam turbine systems are considered for recovering heat from fuel cell exhaust gases. The MCFC generates a considerable propulsion power, and the turbomachinery generates the remainder of the power. The hybrid systems are evaluated regarding system efficiency, economic feasibility, and exhaust emissions. The MCFC with a gas turbine has higher system efficiency than that with a steam turbine. The air compressor consumes substantial power and should be mechanically connected to the gas turbine. Although fuel cell-based systems are less economical than other propulsion systems, they may satisfy the environmental regulations. When the ship is at berth, the MCFC systems can be utilized as distributed generation that is connected to the onshore-power grid.  相似文献   

4.
The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.  相似文献   

5.
Due to increasing concerns on environmental pollution and depleting fossil fuels, fuel cell (FC) vehicle technology has received considerable attention as an alternative to the conventional vehicular systems. However, a FC system combined with an energy storage system (ESS) can display a preferable performance for vehicle propulsion. As the additional ESS can fulfill the transient power demand fluctuations, the fuel cell can be downsized to fit the average power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. This study focuses on a vehicular system powered by a fuel cell and equipped with two secondary energy storage devices: battery and ultra-capacitor (UC). However, an advanced energy management strategy is quite necessary to split the power demand of a vehicle in a suitable way for the on-board power sources in order to maximize the performance while promoting the fuel economy and endurance of hybrid system components. In this study, a wavelet and fuzzy logic based energy management strategy is proposed for the developed hybrid vehicular system. Wavelet transform has great capability for analyzing signals consisting of instantaneous changes like a hybrid electric vehicle (HEV) power demand. Besides, fuzzy logic has a quite suitable structure for the control of hybrid systems. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB®, Simulink® and SimPowerSystems® environments.  相似文献   

6.
Air conditioning machines in Kuwait consume more than 75% of electric energy generated at peak load time. It is in the national interest of Kuwait to decelerate the continuous increase of peak electric power demand. One way to do this is to install for new complexes or high-rise apartments buildings distributed utilities (isolated small power plants), mainly for air conditioning A/C systems. Fuel cells are among the alternatives considered for distributed utilities.This paper discusses the use of commercially available phosphoric acid fuel cell PAFC, known as ONSI P25 to operate air conditioning systems for big buildings in Kuwait.The proposed fuel cell, which is usually delivered with built-in heat exchanger for hot water, is operated by natural gas and uses a propylene glycol-water loop to recover thermal energy. The PAFC has 200 kW nominal electric power capacity, and produces thermal energy of 105 kW thermal energy at 120 °C, and 100 kW at 60 °C.The performance characteristics for the proposed fuel cell are very well documented. In the present study, it is suggested that the fuel cell operates combined mechanical vapor compression and absorption water chillers to utilize the fuel cell full output of electric power and waste heat. Also, to meet the required A/C cooling capacity system by the limited fuel cell power output, it is proposed to use cold storage technique. This allows fuel cell power output to supply the needed energy for average as well as peak A/C system capacity.  相似文献   

7.
为有效回收熔融碳酸盐燃料电池产生的余热,提出一种由熔融碳酸盐燃料电池(MCFC)、两级并联温差发电器(TTEG)和回热器组合而成的混合系统模型.考虑MCFC电化学反应中的过电势损失和混合系统中的不可逆损失,通过数值分析得出混合系统的输出功率和效率的数学表达式,获得混合系统的一般性能特征,讨论MCFC电流密度与温差发电器...  相似文献   

8.
Efforts from all sectors of society including the shipping industry are needed to limit the overall global temperature rise to within 2°C of pre-industrial levels by 2050. The hybridisation of Proton Exchange Membrane Fuel Cells (PEMFC) and Lithium-ion batteries for coastal ship propulsion systems may potentially offer beneficial emission performance. However, such hybrid systems are constrained by power and energy density limitations, lifetime; and costs as well as life-cycle emissions of alternative fuel/energy. There is a lack of holistic design methodology dealing with these uncertainties in the literature. This paper proposes a holistic design methodology for coastal hybrid ships based upon a developed model. The power source sizing problem is solved using constrained mixed-integer multi-objective optimisation in the external layer. The global optimum energy management strategies for an averaged operating profile are obtained from deterministic dynamic programming in the inner layer, while considering power source degradations in the sizing algorithm. The proposed methodology was applied to a coastal ferry to investigate the feasibility and benefit potential of adopting the hybrid PEMFC and battery propulsion system in Matlab. The case studies indicate that the proposed propulsion system can achieve at least a 65% life-cycle greenhouse gas reduction for the considered two cases.  相似文献   

9.
This paper introduces the methods of integration of solar energy and low‐temperature solid oxide fuel cells. On the one hand, we design the system that integrates the solar photovoltaic cells and fuel cells. On the other hand, solar energy is concentrated to heat up the fuel cell and supply the working temperature at hundreds Celsius degrees by Fresnel lens. Then the fuel conversion efficiency is increased because of gain from the solar energy. Moreover, integration of solar thermal energy power system with the fuel is a good method for resolving the instability of solar energy. CHP (combined heat and power) is another aspect to enhance the design hybrid system overall efficiency. Finally, we present a novel device but built on different scientific principle. It can convert solar energy and chemical energy of fuel to electric energy simultaneously within the same device to integrated solar cell and fuel cell from the device level. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Although there has been a lot of waste heat utilization studies for the air-cooled data center (DC) systems, the waste heat utilization has not been studied for the liquid-cooled DC systems, which have been rapidly gaining importance for the high-performance Information and Communication Technology facilities such as cloud computing and big data storage. Compared to the air-cooled systems, higher heat removal capacity of the liquid-cooled DC systems provides better heat transfer performance; and therefore, the waste heat of the liquid-cooled DC systems can be more efficiently utilized in the low-temperature and low-carbon energy systems such as electricity generation via polymer electrolyte membrane (PEM) fuel cells. For this purpose, the current study proposes a novel hybrid system that consists of the PEM fuel cell and the two-phase liquid-immersion DC cooling system. The two-phase liquid immersion DC cooling system is one of the most recent and advanced DC cooling methods and has not been considered in the DC waste heat utilization studies before. The PEM fuel cell unit is operated with the hydrogen and compressed air flows that are pre-heated in the DC cooling unit. Due to its original design, the hybrid system brings its own original design criteria and limitations, which are taken into account in the energetic and exergetic assessments. The power density of the PEM fuel cell reaches up to 0.99 kW/m2 with the water production rate of 0.0157 kg/s. In the electricity generation case, the highest energetic efficiency is found as 15.8% whereas the efficiency increases up to 96.16% when different multigeneration cases are considered. The hybrid design deduces that the highest exergetic efficiency and sustainability index are 43.3% and 1.76 and they are 9.4% and 6.6% higher than exergetic and sustainability performances of the stand-alone PEM fuel cell operation, respectively.  相似文献   

11.
This paper focuses on energy management in an ultra-energy efficient vehicle powered by a hydrogen fuel cell with rated power of 1 kW. The vehicle is especially developed for the student competition Shell Eco-marathon in the Urban Concept category. In order to minimize the driving energy consumption a simulation model of the vehicle and the electric propulsion is developed. The model is based on vehicle dynamics and real motor efficiency as constant DC/DC, motor controllers and transmission efficiency were considered. Based on that model five propulsion schemes and driving strategies were evaluated. The fuel cell output parameters were experimentally determined. Then, the driving energy demand and hydrogen consumption was estimated for each of the propulsion schemes. Finally, an experimental study on fuel cell output power and hydrogen consumption was conducted for two propulsion schemes in case of hybrid and non-hybrid power source. In the hybrid propulsion scheme, supercapacitors were used as energy storage as they were charged from the fuel cell with constant current of 10 A.  相似文献   

12.
In this paper the performance of two polymeric electrolyte fuel cell systems (FCS) for hybrid power trains are presented and discussed. In particular, an experimental analysis was effected on 2.4 and 20 kW stacks with the aim to investigate the energy management issues of the two FCSs for utilization as power sources in electric power trains for scooter and minibus, respectively. The stack characterizations permitted the effect of the main operative variables (temperature, pressure and stoichiometric ratio) on mean power density of cells to be evaluated. The FCS efficiency was evaluated and compared for the two traction systems, individuating the optimal operative conditions for automotive application and specifying the energy losses of the auxiliary components. The efficiency of both fuel cell systems resulted higher than 40% in a wide range of loads (100–600 mA/cm2), with maximum values close to 50%. The experimental characterization of the two power trains was carried out on dynamic test benches, able to simulate the behaviour of the two vehicles on the European R40 driving cycle. The characterization of the two propulsion systems on R40 driving cycle evidenced that the overall efficiency was not affected significantly by the hybrid configuration adopted, as the efficiency values ranged from 27 to 29% in the different procedures analyzed.  相似文献   

13.
Today’s concern regarding limited fossil fuel resources and their contribution to environmental pollution have changed the general trend to utilization of high efficiency power generation facilities like fuel cells. According to annual reducing capital cost of these utilities, their entrance to commercial level is completely expected. Hot exhaust gases of Solid Oxide Fuel Cells (SOFC) are potentially applicable in heat recovery systems. In the present research, a SOFC with the capacity of 215 kW has been combined with a recovery cycle for the sake of simultaneous of electric power, cooling load and domestic hot water demand of a hotel with 4600 m2 area. This case study has been evaluated by energy and exergy analysis regarding exergy loss and second law efficiency in each component. The effect of fuel and air flow rate and also current density as controlling parameters of fuel cell performance have been studied and visual software for energy-exergy analysis and parametric study has been developed. At the end, an economic study of simultaneous energy generation and recovery cycle in comparison with common residential power and energy systems has been done. General results show that based on fuel lower heating value, the maximum efficiency of 83 percent for simultaneous energy generation and heat recovery cycle can be achieved. This efficiency is related to typical climate condition of July in the afternoon, while all the electrical energy, cooling load and 40 percent of hot water demand could be provided by this cycle. About 49 percent of input exergy can be efficiently recovered for energy requirements of building. Generator in absorption chiller and SOFC are the most destructive components of exergy in this system.  相似文献   

14.
An energy analysis of three typical solid oxide fuel cell (SOFC) power systems fed by methane is carried out with detailed thermodynamic model. Simple SOFC system, hybrid SOFC‐gas turbine (GT) power system, and SOFC‐GT‐steam turbine (ST) power system are compared. The influences of air ratio and operative pressure on the performance of SOFC power systems are investigated. The net system electric efficiency and cogeneration efficiency of these power systems are given by the calculation model. The results show that internal reforming SOFC power system can achieve an electrical efficiency of more than 49% and a system cogeneration efficiency including waste heat recovery of 77%. For SOFC‐GT system, the electrical efficiency and cogeneration efficiency are 61% and 80%, respectively. Although SOFC‐GT‐ST system is more complicated and has high investment costs, the electrical efficiency of it is close to that of SOFC‐GT system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
王春杰  李骁  朱洪宇 《柴油机》2020,42(2):25-28
针对车客渡船动力负荷切换频繁,传统柴油机推进油耗高、排放和噪声大的问题,提出一种基于变速发电机组和超级电容储能装置的直流配网型混合动力系统。目前系统已成功应用于“江苏路渡3011”轮,实船运行数据显示:该混合动力系统不仅能达到较好的节油效果、降低排放,更在操控性、舒适性上优于传统的柴油机推进模式。  相似文献   

16.
《Journal of power sources》2002,109(2):287-293
This paper describes an energy recovery system that recovers waste thermal energy from a fuel cell stack and uses it for fuel reforming purposes. The energy recovery system includes a throttling valve, a heat exchanger, and a compressor, and is coupled with a coolant loop of the fuel cell stack. The feed stock of a fuel reformer, which is primarily a mixture of water and fuel, is vaporized in the heat exchanger and is compressed to a sufficiently high pressure before it is ducted into the fuel reformer. The performance of a fuel cell power plant equipped with the energy recovery system is evaluated. The results indicate that the power plant efficiency can be increased by more than 40% compared to that of a fuel cell power plant without the energy recovery system. Additionally, up to 90% of the waste heat generated in the fuel cell stack is recovered. As a result, the required heat dissipation capacity of the radiator that is used for cooling the fuel cell stack can be drastically reduced.  相似文献   

17.
Under the background of extensive improvement of renewable resources and demand for reliable emergency power supply, we proposed a hybrid energy storage system including an electric double-layer capacitor bank and a hydrogen system which is composed of fuel cell, electrolyzer, gas tank and metal hydride tank. Through its integration with photovoltaic power sources in a local direct current grid, we expect to obtain both of stable energy source at ordinary times and long-time reliable autonomous emergency power supply when outages happen. A three-day demonstration of the proposed system was performed. The fluctuation compensation performance of the components and the long-time stable power supply obtained by the entire system were evaluated at first, hence the configuration and the management methods of the proposed system were verified in the autonomous emergency power supply application. Meanwhile, the performance of the hybrid use of the gas tank and the metal hydride tank in the system was preliminarily evaluated, for its effectiveness verification on reducing auxiliary power for temperature condition of the metal hydride tank. Moreover, we investigated the distribution characteristics of the power and energy loss in the electric double-layer capacitor, electrolyzer and fuel cell, and their correlation to the efficiency characteristics under different conditions during the operation. The investigation results showed that the continual low-load-ratio state of the electrolyzer and fuel cell led to the low efficiency, the rare high-power occurrence of the electrolyzer and fuel cell led their demanded excessive power capacity. Thus, we proposed a solution method of shifting the electrolyzer and fuel cell's load to the EDLC, when the electrolyzer and fuel cell are in low-load-ratio and excessive high-power state, in order for efficiency increase and facility capacity reduction.  相似文献   

18.
The hybrid powerplant combining a fuel cell and a battery has become one of the most promising alternative power systems for electric unmanned aerial vehicles (UAVs). To enhance the fuel efficiency and battery service life, highly effective and robust online energy management strategies are needed in real applications.In this work, an energy management system is designed to control the hybrid fuel cell and battery power system for electric UAVs. To reduce the weight, only one programmable direct-current to direct-current (dcdc) converter is used as the critical power split component to implement the power management strategy. The output voltage and current of the dcdc is controlled by an independent energy management controller. An executable process of online fuzzy energy management strategy is proposed and established. According to the demand power and battery state of charge, the online fuzzy energy management strategy produces the current command for the dcdc to directly control the output current of the fuel cell and to indirectly control the charge/discharge current of the battery based on the power balance principle.Another two online strategies, the passive control strategy and the state machine strategy, are also employed to compare with the proposed online fuzzy strategy in terms of the battery management and fuel efficiency. To evaluate and compare the feasibility of the online energy management strategies in application, experiments with three types of missions are carried out using the hybrid power system test-bench, which consists of a commercial fuel cell EOS600, a Lipo battery, a programmable dcdc converter, an energy management controller, and an electric load. The experimental investigation shows that the proposed online fuzzy strategy prefers to use the most power from the battery and consumes the least amount of hydrogen fuel compared with the other two online energy management strategies.  相似文献   

19.
Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power.Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.  相似文献   

20.
This paper presents an experimental assessment of fuel cell hybrid propulsion systems for scooters based on a modular 1.2 kW PEM fuel cell. The tests of the hybrid system are carried out using a programmable electronic load. Different configurations of the fuel cell/battery and the fuel cell/supercapacitor hybrid systems are explored. Both systems demonstrate their ability to deliver the requested load satisfactorily. The distributions of the fuel cell power delivery, although different between the two systems, are within the region where the fuel cell efficiency is approximately constant. As a result, the rates of fuel consumption show no discernable difference between the two systems for all three driving cycles considered. In addition to the fuel consumption, considerations including bus voltage, cost and packaging issues suggest that the supercapacitor has advantages over the battery for the use as secondary energy storage in fuel cell hybrid propulsion system for scooters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号