首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文介绍了一种由水热生长的MnCo2O4 (MCO)纳米线以及随后电沉积的NiCoMnS4(NCMS)纳米片组成的高性能超级电容器电极材料,即泡沫镍上生长的MCO@NCMS.由于其多孔和互联的纳米结构以及MCO和NCMS的协同效应,在1 mA cm-2处实现了12,020.8 mF cm-2的高电容,并展现出良好的倍率性能以及循环稳定性.电化学测试表明,组装成的水性非对称超级电容器在0.800 mW cm-2的功率密度下,达到0.611 mW h cm-2的高能量密度并具有良好的循环稳定性,即在15,000次充放电循环后,容量保持率可达90%,且保持100%的库仑效率.  相似文献   

2.
MXene材料具有组分灵活可调、电容量较高等优势在超级电容器储能领域备受关注。采用电化学法制得聚3, 4-乙烯二氧噻吩/Nb2CTx MXene (PEDOT/MXene)复合电极材料。结果表明,在扫描速率为30 mV·s-1时,PEDOT/MXene的面积比电容可达250.21 mF·cm-2,当电流密度从0.1 mA·cm-2增加到5 mA·cm-2时,PEDOT/MXene的面积比电容保持率为83.5%,远优于PEDOT的64.1%,并且在100 mV·s-1的扫描速率下循环测试1 000次后初始电容保持率可达84%,表现出良好的倍率性能和稳定性。工作为基于MXene基材料构筑高性能电化学储能界面提供了一定的借鉴。  相似文献   

3.
采用非溶剂致相分离法(NIPS)、高温烧结和化学气相沉积法(CVD)相结合的方法制备了石墨烯/多孔镍复合电极(3DPNGNs),明确了烧结温度和C2H2气流量对电极性能的影响。镍膜生坯经850℃烧结后,C2H2气流量为2 mL/min时,催化生长出石墨烯能均匀包覆在多孔镍膜上。结果表明,3DPNGNs作为钠离子电池负极材料展现了良好的电化学性能,在100 mA/g的电流密度下,循环100次后可逆比容量可达260 mA/g,循环500次后,其比容量保持率仍可达84%。当电流密度增大到1 A/g时,循环500次,比容量可达150 mA/g。  相似文献   

4.
通过原位溶剂热反应将锆-金属有机框架(UIO-66)沉积在棉布上,并采用冷冻界面聚合法聚合聚吡咯(PPy)从而获得PPy@UIO-66@棉复合织物电极材料。通过扫描电镜、红外光谱、循环伏安、恒电流充放电、交流阻抗等手段对该复合织物电极的形貌结构和性能进行了表征。结果表明:利用该织物电极组装的超级电容器在电流密度为1.6mA/cm2条件下面积比电容为3888mF/cm2(相应的质量比容量为410.4F/g),经过1000个充放电循环后比电容保持率为73%。  相似文献   

5.
为满足可穿戴电子设备日益提升的要求,低成本、高性能柔性超级电容器成为研究的热点。在玉米苞叶纤维(CHF)基材表面原位生长聚苯胺(PANI),继而以聚乙烯醇/硫酸(PVA/H2SO4)作为凝胶,通过简单的冻融法制备聚苯胺-玉米苞叶纤维柔性自支撑电极(PANI-CHF-GEL)。PANI-CHF-GEL显示出优异的力学性能(断裂强度为259 kPa,断裂伸长率为121%)和较好的韧性(断裂能为0.167 MJ·cm-3)。采用PVA/H2SO4凝胶作为电解质组装得到的PANI-CHF-GEL//PANI-CHF-GEL对称固态超级电容器具有优越的电化学储能性能:在3.00 mA·cm-2的电流密度下,面积比电容高达1 789.74 mF·cm-2,功率密度为0.34 mW·cm-2,能量密度为3.51 mW·h·cm-2。此外,该器件还显示出良好的柔性,弯曲90°时仍能保持其初始性能,表明了其在...  相似文献   

6.
以六水合氯化钴(CoCl_2·6H_2O)为钴源、硫脲[CS(NH_2)_2]为硫源,采用电化学沉积法分别在泡沫镍(NF)和三维石墨烯(3DGE)/泡沫镍(3DGE/NF)两种基底上制备三维硫化钴/石墨烯/泡沫镍(3DCoS/GE/NF)和硫化钴(CoS)/泡沫镍(CoS/NF)电极。通过考察NF与3DGE/NF两种基底对电极电化学性能的影响,可知3D GE/NF基底由于具有高品质、高导电性的石墨烯,促进了电极与电解液的电荷传输,能够有效提高电极材料的比容量和循环倍率性能。在1A/g电流密度下,3DCoS/GE/NF比容量达到2320F/g,高于CoS/NF电极的比容量(1269F/g),即使在20A/g时,3DCoS/GE/NF电极比容量仍有1638F/g,且在10A/g大电流密度下经过500次循环后,3DCoS/GE/NF的比容量保持率为73.44%,远远高于CoS/NF的比容量保持率(44.69%)。  相似文献   

7.
使用溶胶凝胶原位碳热还原制备了Co2+掺杂石墨烯/LiFePO4锂离子电池复合正极材料(石墨烯/LiCo0.03Fe0.97PO4),以期获得比容量高、充放电速率快和循环性能优良的锂离子电池正极材料。结构和形貌表征结果显示:石墨烯/LiCo0.03Fe0.97PO4复合材料具有三维导电网络结构,颗粒在石墨烯片层间生长均匀,粒径在200nm左右。电化学测试结果显示:石墨烯/LiCo0.03Fe0.97PO4复合材料具有高的可逆比容量和优异的循环倍率性能。2.0~4.0V充放电下0.1C时的首次放电比容量为159mA·h·g-1,在10.0C下首次放电比容量也有74mA·h·g-1;0.5C下循环100次,比容量保持率为99.7%。石墨烯/LiCo0.03Fe0.97PO4复合材料电化学性能提高的原因主要为Co2+掺杂和石墨烯包覆的协同作用。  相似文献   

8.
过渡金属硒化物具有较高的理论比容量和良好的导电能力, 是钠离子电池潜在的负极材料, 但其在电化学过程中会发生较大体积变化, 循环寿命不佳, 发展受到了限制。为缓解上述问题, 本研究以金属有机框架材料ZIF-67为前驱体, 用单宁酸(Tannic acid, TA)将ZIF-67刻蚀为空心结构, 再通过碳化、硒化制备出以碳为骨架的纳米中空CoSe2材料(H-CoSe2/C), 相较于未经刻蚀处理的CoSe2材料(CoSe2/C), H-CoSe2/C表现出更好的储钠性能, 特别是循环稳定性得到显著提高。50 mA·g-1电流密度下, 经过350次循环, 可逆比容量保持在383.4 mAh·g-1, 容量保持率为83.6%; 在500 mA·g-1电流密度下, 经过350次循环后容量保持率仍能达到72.2%。本研究表明, 中空结构能够提供足够的空间以缓解材料在电化学过程中的体积变化, 进而提高电极材料的循环性能。  相似文献   

9.
张清波  李东林  高建行  李童心  张龙 《功能材料》2022,(12):12196-12202
采用溶胶-凝胶法合成Zn2+掺杂的LiNiO2(LNO)正极材料,研究了不同Zn2+掺杂量对LNO性能的影响。结果表明,2%(摩尔分数)Zn2+掺杂的镍酸锂正极材料(LNO-2Zn)具有优异的循环性能和倍率性能。在1C电流密度下循环100次,LNO-2Zn的容量保持率为80.0%,高于未掺杂LNO的74.8%;在10C大电流密度下,LNO-2Zn的首次放电比容量为112.1 mAh/g,高于未掺杂LNO的48 mAh/g。适量的Zn2+掺杂能够降低Li/Ni混排程度并且抑制有害相变的发生,从而提高LNO的电化学性能。  相似文献   

10.
采用两步界面组装法制备石墨烯/MnO2纳米片(GMTF)三维复合薄膜电极,研究了复合薄膜的电化学性能。结果表明,MnO2的赝电容和石墨烯的双电层电容相互协调,使得GMTF复合薄膜材料比单一的MnO2纳米片或者石墨烯材料具有更佳的电化学性能。在三电极体系中,GMTF电极的比电容在5mV/s时达156.54mF/cm2,远高于石墨烯(40.24mF/cm2)和MnO2纳米片(69.03mF/cm2)。此外,在两电极体系中,基于GMTF复合薄膜的固态超级电容器也显示出较高的面积比电容(120.49mF/cm2)和质量比电容(204.22F/g)、优良的循环性能。在功率密度为39mW/cm3时,能量密度能够达到1.735mWh/cm3。  相似文献   

11.
采用超声辅助浸渍-烘干、化学沉积与阳极氧化方法制备了由棉织物(CF)、多壁碳纳米管(MCNT)和核壳结构镍@氢氧化镍(Ni@Ni(OH)2)构成的多级结构复合电极材料(CF-MCNT/Ni@Ni(OH)2),并利用扫描电子显微镜、X射线衍射分析、电化学测试等手段对其结构与性能表征。结果表明,该电极在2 mol/L KOH溶液中0.5 mA/cm2电流密度下面积比电容可达6 300 mF/cm2(3 mA/cm2时为4 927 mF/cm2),与CF-Ni@Ni(OH)2相比具有较大提高,同时充放电循环性能也有提升。MCNT的引入有利于CF表面形成粗糙导电膜,为优化电极结构以制备具有高性能储能器件提供了借鉴。  相似文献   

12.
过渡金属硫化物作为钾离子电池的高理论容量阳极,由于其电导率低、循环过程体积膨胀大,导致其倍率性能和循环稳定性较差.本文采用氧化石墨烯(GO)来控制纳米颗粒在纤维中的粒径和分布,以提高复合纤维的导电性和拉伸变形.此外,由异质结构和氧化石墨烯组成的三维导电碳网络(ZnS-CoS@GO@CNFs)可以加速钾离子储存的动力学并稳定钾离子储存.作为钾离子电池的阳极材料,该复合材料在3 A g-1下具有210 mA h g-1的优异倍率性能.在2 A g-1的大电流下经历2800次循环后仍表现出171 mA h g-1的容量,容量保持率为97.7%.此外,当纳米纤维膜用作自支撑阳极时,仍然可以保持稳定的容量输出(在0.1 A g-1下100次循环后容量为302 mA h g-1).由钾离子混合电容器组装的可折叠袋状电池在多角度重复弯曲和最终恢复的情况下仍然可以安全地工作,并且可以提供大的能量密度(134 W h kg-1)和功率密度(5815 W...  相似文献   

13.
宋治廷  蒋文成  胡洪铭  杨子泽  舒婷  李艳虹 《功能材料》2022,(12):12085-12091+12127
Fe2O3具有成本低、无毒、来源丰富、对环境友好等优点,被认为是一种极具应用前景的水系超级电容器负极材料,然而它也存在电导率低、循环稳定性和倍率性能差等缺点。采用水热法和热处理法在碳纸上制备获得了N、S共掺杂的Fe2O3。研究结果表明,N和S掺杂未改变材料的物相,但却使材料的形貌由纳米线组成的网状结构变为一层致密多孔的薄膜。其次,由于导电性的提高和反应活性位点的增多,材料表现出较高的比电容(473.2 mF/cm2,2 mA/cm2下)、优越的倍率性能(85.5%,2~20 mA/cm2)和良好的循环稳定性(96%,15 mA/cm2,10 000圈),还具有更高的电化学反应可逆性和库伦效率。最后将N、S-Fe2O3与商业活性炭组装了水系非对称型超级电容器,其体积比电容为2.1 F/cm3(1 mA/cm2下)。将两个组装的超...  相似文献   

14.
采用柔性碳布作为复合电极的集流体,将高导电性的碳纳米管(CNTs)通过静电植绒的方式嵌入聚偏氟乙烯(PVDF)粘结剂中,得到具有更大电化学活性表面积的复合结构。然后将所得的材料通过电化学沉积的方式将具有赝电容特性的聚苯胺(PANI)镀在CNTs表面,得到了具有碳纳米管/聚苯胺(CNTs/PANI)两种活性物质的二元复合电极。采用扫描电子显微镜(SEM)对电极材料的结构进行表征。并将其与含有硫酸的聚乙烯醇(PVA)水凝胶电解质组装成具有对称结构的柔性固态超级电容器(SSC),并利用电化学工作站对其电性能进行测试,结果表明:在1 mA/cm2的电流下,具有517 mF/cm2的比容量;经过2500次的循环后,具有79.8%的容量保持率,库伦效率超过97%。该研究表明静电植绒技术可以作为制备高性能电极材料的一种有效途径。  相似文献   

15.
用超声辅助溶液燃烧合成技术制备双层碳包覆的Na3V2(PO4)3 (NVP)钠离子电池正极材料,并对其电化学性能进行深入的研究。结果表明,双层碳包覆在NVP颗粒表面,由内自外分别为无定形硬碳和石墨烯。石墨烯添加量为5.0%(质量分数)的碳包覆NVP复合材料具有优异的电化学性能,在1 C倍率下充放电其初始比容量为117 mAh·g–1,循环300圈后容量的保持率为79%,在10 C倍率下其放电比容量高达100 mAh·g–1。这种正极材料电化学动力学性能的提高,源于均匀的双层碳包覆结构及其构建的三维电子传输通道。  相似文献   

16.
以改进的Hummers法制备的Mn~(2+)/氧化石墨烯悬浊液为原料无需添加锰源,采用水热法得到Mn_3O_4含量可调的Mn_3O_4-石墨烯气凝胶(Mn_3O_4-GA)。得益于石墨烯气凝胶相互连通的三维导电网络以及Mn_3O_4纳米粒子和其间的强烈的耦合作用Mn_3O_4-GA表现出了比Mn_3O_4-石墨烯粉末复合物(Mn_3O_4-G)更加优异的储锂性能其中Mn_3O_4-GA-70(Mn_3O_4含量为70%)在100 mA·g~(-1)的电流密度下其可逆比容量达到1073 mA·h·g~(-1),在800 mA·g~(-1)的电流密度下循环200次后其比容量为565 mA·h·g~(-1),保持率为85%。该方法为环境友好制备锰基石墨烯气凝胶提供新思路。  相似文献   

17.
混合型纳米电极材料的合理设计及合成对于其不同的应用具有重要意义,尤其是对于可用于下一代电动汽车和电子设备供电的高效纳米结构超级电容器(SCs)储能器件.本文报道了一种简便可控合成核-壳Ni3S2@NiWO4纳米阵列的方法,并将其用于混合超级电容器的独立电极.在5 mA cm-2的条件下,所制备的Ni3S2@NiWO4独立电极表现出高达2032μA h cm-2的面积容量;即使电流密度增至50 mA cm-2,其容量保留率仍为63.6%.更重要的是,在功率密度为3.128 mW cm-2时,该Ni3S2@NiWO4纳米阵列混合超级电容器仍表现出1.283 mW h cm-2的最大能量密度;而在能量密度为0.753 mW h cm-2时,该超级电容器表现出的最大功率密度为41.105 mW cm-2.此外,该混合超级电容器在连续10,000次循环后仍能保持89.6%的原始容量,从而进一步证明其优异的稳定性.本研究为合理设计各种核壳金属纳米结构提供了便捷途径,有助于促进其在高性能储能器件领域的广泛应用.  相似文献   

18.
用一步水热法制备B3+掺杂Birnessite-MnO2负极材料,使用XRD,Raman,SEM,TEM,XPS和恒电流充放电等手段表征了材料的结构和电化学性能。结果表明,B3+掺杂前后的MnO2都是由二维纳米片组装而成的花球,B3+离子掺杂使纳米片的厚度减小,从而缩短了锂离子和电子在材料内部的传输路径;掺杂适量的B3+离子,使Birnessite-MnO2的电荷转移电阻显著降低。B3+掺杂比例为9%的电极材料,具有最优的电化学性能。在电流密度为100 mA·g-1和1000 mA·g-1的条件下,首次充电比容量分别为855.1 mAh·g-1和599 mAh·g-1,循环100次后仍然保有805 mAh·g-1和510.3 mAh·g-1的可逆比容量,容量保持率分别为94.1%和85.2%。  相似文献   

19.
采用磁控溅射技术对碳纳米管膜进行表面金属化处理,制备了导电性能优异的碳纳米管/金属复合薄膜,其电导率为纯碳纳米管膜的10倍(碳纳米管膜电导率为300 S·cm-1)。以这种复合薄膜为集流体组装的柔性锂离子电池,具有比以纯碳纳米管膜作为集流体更优异的倍率性能(5 C倍率下比容量仍可保持132.6 mAh·g-1)、大倍率循环性能(5 C倍率200圈循环后仍具有74.4%的容量保持率)和更大的输出电流(0.4 A)。  相似文献   

20.
单质硅是一种有潜力的高容量锂离子电池负极材料.然而,受限于充放电过程中巨大的体积膨胀,其循环性能并不理想.在这个工作中,我们设计了一种独特的三组分复合负极材料(Si/Cr2O3/C),其中Si纳米颗粒被限域在碳包覆的氧化铬多层空心球(MSHSs)中.得益于Cr2O3/C基体的体积变化缓冲能力与优异的结构稳定性,将Si纳米颗粒封装在MSHSs中可以有效地提高其电化学性能.合理的结构设计赋予了Si/Cr2O3/C三组分复合材料高的可逆容量(在100 mA g-1的电流密度下,比容量为1351 mA h g-1)和稳定的循环性能(在500 mA g-1的电流密度下,循环300次后比容量保持在716 mA h g-1).这一工作提出了一种多壳层空心结构设计的新思路,以解决硅基负极材料循环性差的瓶颈.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号