首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 17 毫秒
1.
根据实际所测得的S波段光纤拉曼放大器的信号增益谱,通过对长周期光纤光栅具体参数的选定,由两个长周期光纤光栅级联滤波的组合,可以使增益图谱在50 nm(1485-1535 nm)带宽内,增益平坦度达到±0.6dB以内.由三个长周期光纤光栅级联滤波组合,可以使增益图谱在49 nm(1490-1539 nm)带宽内,增益平坦度达到0.5 dB, 55 nm(1485-1540 nm)带宽内,增益平坦度达到1 dB.这对扩大长周期光纤光栅增益平坦滤波器的运用范围,扩大单泵浦S波段光纤拉曼放大器的有效增益带宽有着积极的意义.  相似文献   

2.
根据实际所测得的S波段光纤拉曼放大器的信号增益谱,通过对长周期光纤光栅具体参数的选定,由两个长周期光纤光栅级联滤波的组合,可以使增益图谱在50nm(1485~1535nm)带宽内,增益平坦度达到士0.6dB以内.由三个长周期光纤光栅级联滤波组合,可以使增益图谱在49nm(1490~1539nm)带宽内,增益平坦度达到0.5dB,55nm(1485~1540nm)带宽内,增益平坦度达到1dB.这对扩大长周期光纤光栅增益平坦滤波器的运用范围,扩大单泵浦S波段光纤拉曼放大器的有效增益带宽有着积极的意义.  相似文献   

3.
提出了一种采用F-P光纤环滤波器的窄线宽环形腔激光器,该激光器采用环形腔结构,两个耦合比为30:70的耦合器和一段2 m长的未泵浦掺铒光纤构成F-P光纤环滤波器,F-P光纤环滤波器产生的梳状谱,可以增大激光模式之间的自由光谱范围(FSR),在一定程度上减小跳模现象的发生,有利于模式的稳定。研究表明,通过对掺铒光纤的优化和耦合器的选择可以提高F-P光纤环滤波器的精细度,而F-P光纤环中的未泵浦掺铒光纤起到饱和吸收体的作用,使输出激光的线宽得到有效压缩。将保偏光纤光栅和F-P光纤环滤波器共同应用于环形腔掺铒光纤激光器,在室温下得到了3 dB线宽均小于0.07 nm(实验室光谱仪最小分辨率)的窄线宽双波长输出。在2 h的观测时间内,最大峰值功率波动小于0.4 dB,具有良好的稳定性。  相似文献   

4.
在分析光纤Bragg光栅Fabry-Perot(F-P)腔特征的基础上,提出光纤Bragg光栅F-P滤波器的数学模型.利用传输矩阵法对光纤Bragg光栅F-P腔进行了理论分析.通过Matlab仿真工具数值模拟了光纤Bragg光栅F-P滤波器的光谱,并对其特性进行了详细分析,得出了决定滤波器光谱特性的有关参量及其影响规律.根据光纤光栅F-P腔的相位谐振条件,推导了光纤光栅F-P腔腔长与光纤光栅常数之间的关系,从而为基于光纤 Bragg光栅的F-P滤波器的实际制作提供了依据.  相似文献   

5.
基于光纤Bragg光栅的Fabry-Perot滤波器特性的分析   总被引:1,自引:0,他引:1  
在分析光纤Bragg光栅Fabry-Perot(F-P)腔特征的基础上,提出了光纤Bragg光栅F-P滤波器的数学模型.利用传输矩阵法对光纤Bragg光栅F-P腔进行了理论分析.通过Matlab仿真工具数值模拟光纤Bragg光栅F-P滤波器的光谱,并对其特性进行了详细分析,得出了决定滤波器传输特性的相关参量及其影响规律.根据光纤Bragg光栅F-P腔的相位谐振条件,推导了光纤光栅F-P腔的腔长与光纤Bragg光栅常数之间的关系,从而为研制基于光纤Bragg光栅的F-P滤波器提供了依据.  相似文献   

6.
基于F-P腔的光纤光栅传感器波长移位量的检测   总被引:1,自引:1,他引:0  
杨颖 《半导体光电》2011,32(3):439-441
对构成法布里-珀罗腔(F-P腔)的光纤布喇格光栅的传输特性进行了分析,推导了F-P腔的光强透射率和反射率的解析表达式。将F-P腔内一个光纤布拉格光栅的背面贴一压电陶瓷,通过给压电陶瓷施加扫描电压使透过F-P腔的光的波长发生改变。光纤光栅受应力、应变及温度的影响时,其反射波长要发生相应变化,当探测器探测到最大光强时,根据给压电陶瓷施加的电压变化量就可确定布喇格光栅反射波长的移位量,测量精度可达到0.01 nm。  相似文献   

7.
基于飞秒激光制备的光纤Fabry-Perot折射率传感器   总被引:5,自引:5,他引:0  
在对光纤Fabry-Perot(F-P)传感器多光束干 涉原理仿真分析的基础上,利用波长为800nm的飞秒 激光脉冲在普通单模光纤(SMF)上制备微型传感器,并对其折射率响应性能进行了实验测试 。理论分析表明,在低、高折射率区域,F-P传感器的反射谱对比度随着折射率的增加分别 呈现先降低后增加的趋势(折射率高低分界点1.457)。飞秒激光 的制备方法通过计算机控制腔长等可以进行参数可选择的微型光纤F-P传感器的制作。利用 制备的传感器对一系列不同折 射率的溶液进行了折射率响应测试实验,测试结果表明,传感器反射谱对比度对低折射率物 质(折射率小于 1.457)的灵敏度为27.65dB/RI,对高折射 率 物质(折射率大于1.457)的灵敏度为3.50dB /RI,且均具有良好的线性响应。  相似文献   

8.
赵雷  陈伟民  章鹏 《激光杂志》2006,27(5):15-16
讨论了光在F-P腔内的传输损耗,并分析了损耗对传感器输出信号质量的影响,进而提出了通过提高反射光纤端面反射率的方法来改善传感器输出信号的质量。为了使传感器在其工作腔长范围内的输出信号整体上具有尽可能好的对比度,采用最小均方误差法确定了反射光纤端面的最优反射率值,为F-P传感器制作中光纤端面反射率的确定提供了指导。  相似文献   

9.
F- P型可调谐液晶光学滤波器是一种小体积窄带宽低压调谐滤波器。液晶作为腔内工作物质,其损耗对器件的性能有重要的影响。文章以F- P干涉仪为基础,分析了液晶损耗对这类滤波器的半强度带宽(FWHM) 和峰值透过率的影响,以利于不同要求的滤波器的设计制作。  相似文献   

10.
光纤拉曼放大器的带宽、增益及增益平坦度直接影响了光纤通信系统的传输质量.针对这些参数的优化,根据碲基光纤的拉曼增益谱特性提出了一种双泵浦级联碲基光纤的拉曼放大器结构.并推导了实现增益谱平坦时光纤长度和泵浦参数满足的约束条件.经过对拉曼增益谱的5次多项式拟合,更准确地反映了拉曼增益谱的信息,同时也简化了其实现增益谱平坦的条件.通过Matlab仿真分析得到,当两段光纤分别取0.339 km,0.16 km时,其最大增益为17.81 dB,增益平坦度为0.66 dB ,放大带宽为48 nm.该方案为宽带宽、高增益、增益平坦度小的拉曼光纤放大器设计提供了一种新的思路.  相似文献   

11.
1550 nm高效窄线宽光纤激光器   总被引:1,自引:0,他引:1  
研制了一种采用双光纤光栅法布里-珀罗(FBG F-P)腔选模的线形腔结构窄线宽光纤激光器.激光器以高掺杂Er3 光纤为增益介质,结合非相干技术,利用全光纤型法拉第旋转器(FR)抑制空间烧孔效应,通过2个短FBG F-P腔选模,产生了稳定的1 550 nm单频激光输出.采用两端976 nm LD抽运方式,阈值抽运光功率为11 mW,在抽运光功率为145 mW时输出信号光功率为73 mW.光-光转换效率为50%,斜率效率达55%.采用延迟自外差方法精确测量光纤激光器线宽,实验中使用了10 km单模光纤延迟线,由于测量精度的限制,得到线宽小于10 kHz.研究表明,这种光纤激光器具有输出功率高、线宽窄和信噪比高的特点,可用于高精度的光纤传感器系统.  相似文献   

12.
针对传统光纤通信传输系统中拉曼光纤放大器(RFA)增益带宽不足、输出增益低且输出增益不平坦的问题,设计了一种多泵浦和光纤级联相结合的宽带拉曼光纤放大器。并且推导实现增益平坦输出时所用六个泵浦光和四段光子晶体光纤(PCF)对应参数满足的约束表达式,从理论上给出了一种提高放大器增益和增益带宽的同时保证较小增益平坦度的设计方法。最后通过Matlab数值模拟,所设计的宽带拉曼光纤放大器达到了增益带宽92 nm,平均增益39.95 dB,增益平坦度0.1447 dB。  相似文献   

13.
基于光纤光栅法布里-珀罗腔的高效窄线宽光纤激光器   总被引:12,自引:0,他引:12  
报道了采用双光纤光栅(FBG)法布里-珀罗(F-P)腔选模的线形腔结构窄线宽光纤激光器。激光器以高掺杂Er~(3 )光纤为增益介质,利用全光纤型法拉第旋转器(FR)抑制空间烧孔效应,通过两个短光纤光栅法布里-珀罗腔选模,产生了稳定的1534.83 nm单频激光输出。激光器采用两支976 nm单模激光二极管(LD)抽运,两端输出。激光器阈值抽运光功率为12 mW,在总抽运光功率为145 mW时总输出信号光功率为39.5 mW,单端最高输出信号光功率为22 mW。光-光转换效率为27%,斜率效率为29.7%。随着抽运功率的增加,激光器输出功率趋于饱和。采用延迟自外差方法精确测量光纤激光器线宽,实验中使用了15 km单模光纤延迟线,由于测量精度的限制,得到激光器的线宽小于7kHz。这种光纤激光器具有输出功率高、线宽窄、信噪比高的特点,可用于高精度的光纤传感系统。  相似文献   

14.
Thin film (TF)-based coupled cavity all-pass filters (CCAP) have the potential for providing compact, low-loss, and highly stable third-order dispersion (TOD) compensation in ultrafast optical fiber transmission systems employing optical time-division multiplexing (OTDM). In this paper, a methodology for designing CCAP filters for TOD compensation is presented, First, we develop a theory necessary for designing the cavity structure, that is, mirror reflectivity and cavity spacing, of CCAP filters. As a next step, we discuss how we can represent such filters as TF devices and demonstrate several TF-layer design examples. Finally, a coupled two-cavity filter is constructed and tested. The filter has a center wavelength that can be varied over a range of 8 nm and can compensate for fiber TOD between 2.0 and 15.5 ps 3 over a bandwidth between 3.6 and 1.2 nm, respectively. The peak spectral ripple of the filter is 1.0 dB, The experimentally measured dispersion curves of the filter agree well with the theory  相似文献   

15.
单纵模、波长可开关的线性腔光纤激光器   总被引:5,自引:3,他引:2  
俞力  宋跃江  张旭苹 《中国激光》2008,35(10):1455-1458
提出并实现了一种单纵模输出、波长可开关的光纤激光器.该激光器采用线性法布里-珀罗(F-P)腔结构,利用980 nm抽运的掺铒光纤(EDF)作为增益介质,并且通过腔内另一段未抽运的掺铒光纤的饱和吸收效应来实现光纤激光器的单纵模运转;同时利用1×N光开关和N个并联的不同中心波长的光纤光栅(FBG)的选波作用,通过控制光开关的电压信号,实现N个输出波长的可开关功能.在90 mw的抽运功率下,获得了-0.5 dBm峰值功率,3.6 kHz线宽的单纵模激光输出;输出光的波长在控制电压的作用下可在1574.6 nm,1579.7 nm,1584.8 nm和1589.9 nm四个波长之间任意选择.  相似文献   

16.
LiNbO3光波导F-P腔滤波器的分析设计   总被引:2,自引:1,他引:1  
采用转移矩阵法推导出内置LiNbO3光波导的FP腔滤波器的功率传输系数,运用计算机进行模拟计算,分析了光波导的传输损耗和腔薄膜反射率对滤波器透射光谱的强度、带宽和精细度的影响.结果表明,传输损耗越大,透射光谱的强度变小,带宽越大;反射率越大,透射光谱的强度变小,但带宽变小,精细度增大.考虑了滤波器的透射光谱强度和精细度等因素,提出一个合理的腔薄膜反射率,优化了滤波器的设计参数.  相似文献   

17.
贺超  廖同庆  吴昇  魏小龙 《红外与激光工程》2017,46(9):920003-0920003(6)
针对负系数微波光子滤波器很难用正系数的光学抽头来实现,提出了一款基于色散器件级联的可调谐、窄带宽、负系数微波光子滤波器。利用整形后的多波长光纤激光器的输出信号作为滤波器的抽头光源,将单模光纤与F-P光纤环级联作为延迟单元,实现滤波器的频率选择性。利用相位调制器和级联的色散器件共同作用,实现负系数的微波光子滤波器。实验得到了波长间隔为0.34 nm的多达37个激光信号的稳定输出,进而基于此实验结果仿真研究了F-P光纤环中C2、C3的耦合系数r、不同长度的可调谐光纤延迟线(TODL)和延迟单元中不同长度的单模光纤等参数对微波光子滤波器性能的影响。  相似文献   

18.
拉曼光纤激光器的初步研究   总被引:2,自引:0,他引:2  
采用标准单模石英光纤作为拉曼增益介质,国产镀膜镜作为谐振腔镜,在1064nm 光纤 激光器的泵浦作用下,在波长1123nm 获得了一级拉曼激光输出。实验观察了激光的形成过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号