首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
Trichinella spiralis is an intestinal and tissue parasitic nematode, emerging and re-emerging causative agent of a serious foodborne parasitic infection. This study aimed to evaluate the effect of Luffa aegyptiaca leaf extract and its triterpene glycosides on the intestinal and muscle stages of T. spiralis infection in vitro and in vivo. Phytochemical investigations of the extract led to the isolation of five compounds, namely (1) 3-O-β-d-glucopyranosyl-16-O-β-hydroxyolea12-en 23, 28-β-d-diglucopyranoside ester, (2) 3β-hydroxylolea12-en-28-oic acid (Oleanoic acid), (3) oleanolic acid 3-O-α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranoside, (4) 3-O-β-d-glucopyranosyl-28-β-d-glucopyranosyl oleanolate, and (5) stigmast-5, 22-dien-3-O-β-d-glucopyrano-side. Moreover, the in vitro study showed marked degeneration and destruction of adult worms and larval teguments with tested drugs. Also, in the in vivo study, mice were divided into six groups; group I: infected and untreated, group II: received leaf extract as prophylaxis, group III: infected and treated with leaf extract, group IV: treated with compound (4), group V: treated with compound (1), and group VI: treated with albendazole. Furthermore, the treatment efficacy was assessed by the adult and total larval counts, histopathological study of the small intestinal and muscle tissues, and immunohistochemical staining of CD34 in muscles. The results revealed a significant reduction of total adult and larval counts in prophylactic and treated groups compared to the positive control group, with a reduction of total adult count by 63.48% and 74.4% in compound (1) and compound (4) treated groups, respectively. Also, a reduction was detected in larval counts by 36.5%, and 93.6% in compound (1) and compound (4) treated groups during both the muscular and intestinal phases, respectively.Additionally, histopathological examination of the small intestine and muscles showed marked improvement with a reduction in the inflammatory infiltrates in treated groups. CD34 expressions were reduced in treated groups with more reduction in compound (4) treated group. In conclusion, this study implies that L. aegyptiaca leaf extract and its tested triterpene glycosides might be used for anti-trichinellosis treatments.  相似文献   

2.
Neomangiferin (NMF) is an extremely special xanthone that could be simultaneously attributed to C-glycoside and O-glycoside with a variety of biological activities, such as anti-inflammatory, antitumor, antipyretic, and so on. So far as we know, the metabolism profiling has been insufficient until now. Herein, Drug Metabolite Cluster Centers (DMCCs)-based Strategy has been developed to profile the NMF metabolites in vivo and in vitro. Firstly, the DMCCs was proposed depending on literature-related and preliminary analysis results. Secondly, the specific metabolic rule was implemented to screen the metabolites of candidate DMCCs from the acquired Ultra High Performance Liquid Chromatography Quadrupole Exactive Orbitrap Mass Spectrometry (UHPLC-Q-Exactive Orbitrap MS) data by extracted ion chromatography (EIC) method. Thirdly, candidate metabolites were accurately and tentatively identified according to the pyrolysis law of mass spectrometry, literature reports, comparison of reference substances, and especially the diagnostic product ions (DPIs) deduced preliminarily. Finally, network pharmacology was adopted to elucidate the anti-inflammatory action mechanism of NMF on the basis of DMCCs. As a result, 3 critical metabolites including NMF, Mangiferin (MF) and Norathyriol (NA) were proposed as DMCCs, and a total of 61 NMF metabolites (NMF included) were finally screened and characterized coupled with 3 different biological sample preparation methods including solid phase extraction (SPE), acetonitrile precipitation and methanol precipitation. Among them, 32 metabolites were discovered in rat urine, 30 in rat plasma, 12 in rat liver, 9 metabolites in liver microsomes and 8 in rat faeces, respectively. Our results also illustrated that NMF primarily underwent deglucosylation, glucuronidation, methylation, sulfation, dihydroxylation and their composite reactions in vivo and in vitro. Additionally, network pharmacology analysis based on DMCCs revealed 85 common targets of disease-metabolites, and the key targets were TNF, EGFR, ESR1, PTGS2, HIF1A, IL-2, PRKCA and PRKCB. They exerted anti-inflammatory effects mainly through the pathways of inflammatory response, calcium-dependent protein kinase C activity, nitrogen metabolism, pathways in cancer and so on. In general, our study constructed a novel strategy to comprehensive elucidate the biotransformation pathways of NMF in vivo and in vitro, and provided vital reference for further understanding its anti-inflammatory action mechanism. Moreover, the established strategy could be generalized to the metabolism and action mechanism study of other natural products.  相似文献   

3.
Ethnopharmacological relevanceMetabolic syndrome is closely related to the intestinal microbiota and disturbances in the host metabolome. Hyperuricemia (HUA), a manifestation of metabolic syndrome, can induce various cardiovascular diseases and gout, seriously affecting a patient’s quality of life. Astragalus membranaceus has a long history as a commonly used traditional Chinese medicine to treat kidney disease in China and East Asia.Materials and methodsWe compared the therapeutic effect of benzbromarone and two different doses Astragalus membranaceus ultrafine powder (AMUP) in rats with HUA. Ultra-performance liquid chromatography-mass spectrometer was used to analyze the AMUP metabolism in the plasma, urine, and feces. Further, 16S ribosome RNA sequencing and feces metabolomic were performed to capture the variation of the gut microbiota and metabolites changes before and after drug administration.ResultsAMUP had a notable impact on reducing blood uric acid levels while protecting the liver and kidney. Drug metabolism analysis demonstrated that effective constituent flavonoids are distributed in the blood, whereas saponins remain in the intestine. Gut microbiota analysis showed that low-dose AMUP ameliorated HUA-induced gut dysbiosis by reducing the abundance of harmful bacteria and increasing that of some beneficial bacteria with anti-inflammatory properties, such as Clostridia, Lachnospiraceae, and Muribaculaceae. In addition, HUA-induced changes in metabolite contents in bile acid and adrenal hormone biosynthesis pathways were restored after treatment with AMUP.ConclusionLow-dose AMUP exerts remarkable therapeutic effects on HUA by regulating the gut microbiome and mediating gut metabolism pathways associated with uric acid excretion.  相似文献   

4.
Vitellaria paradoxa Gaertn. is a multipurpose medicinal plant of the family Sapotaceae, and it has been widely used usually in the clinical traditional medicine as remedy for a wide range of diseases for several decades. In addition, the plant has also found applications in confectionery, cosmetics and soaps, and pharmaceuticals both locally and internationally. V. paradoxa, which has been identified with >150 phytoconstituents, is rich in oleanane-type triterpene acids and glycosides, such as paradoxosides A-E, tieghemelin A, parkiosides A-C, bassic acid, as well as flavonoids such as quercetin and catechin-type compounds. The extracts and the active constituents of V. paradoxa have been investigated for various pharmacological activities, including but not limited to anticancer, melanogenesis-inhibitory, antibacterial, anti-diabetic, antioxidant, anti-inflammatory, anti-diarrhoeal, and antifungal activities. Additionally, V. paradoxa has also been utilized in nanoparticles (NPs) synthesis. These NPs among other things have shown significant antinociceptive and antiedematogenic activities as well as environmental friendly adsorptive properties for the removal of pollutants from pharmaceutical effluents. Overall, this review comprehensively examines the traditional uses, phytochemistry, pharmacology, toxicology, clinical studies, and nanoparticles synthesized from V. paradoxa and their applications.  相似文献   

5.
Alzheimer's disease (AD) is a latent and progressive neurodegenerative disease. Schisandra chinensis(Turcz.)Baill - Acorus tatarinowii Schott (Sc-At) are effective in treating neurological disorders.Purpose of this study is to explore the mechanism of Sc-At in AD treatment. First, untargeted ultra-performance liquid chromatography quadrupole-time of flight/mass spectrometer (UPLC-QTOF/MS) metabolomics was employed to detect the rat brain metabolism. Then, network pharmacology was used to determine the potential anti-AD targets. Bioinformatics, and molecular docking were conducted for further analysis. A MetScape study examined the association between differential metabolites and potential targets. Finally, the targeted ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) metabolomics and the potential protein activity studies were carried out to elucidate the mechanisms. The results showed that Sc-At improved the neuronal cell alignment disorder in hippocampal CA1 region of AD rats. In brain metabolomics, 30 differential metabolites were screened in the study model versus blank group. The network pharmacology analyzed 54 targets of Sc-At anti-AD where, 14 were correlated with amyloid β-protein (Aβ). Aromatase was selected as an important hub target having the best binding power in molecular docking simulation predictions and also correlated with Aβ. Further tests showed that the brain aromatase activity, and the downstream product 17β-Estradiol levels were elevated in AD rats treated with Sc-At. This work may provide new perspectives for the pharmacological effects and the action mechanisms of natural compounds extracts in treating AD progression.  相似文献   

6.
Fructus Psoraleae (FP), the dried ripe fruit of Psoralea corylifolia L., is a popular herbal medicine commonly applied for alleviating osteoporosis and vitiligo. But, until now, the dynamic variations of compounds in P. corylifolia have been less investigated during its growth, storage, and treatment by different temperatures, which is meaningful for guaranteeing the quality of FP. In this study, focused on these questions, with emphasis on the enzyme-driven dynamic transformation of coumarins, ultra-high performance liquid chromatography coupled with photodiode array detector (UHPLC-PDA) method was successfully established for the simultaneous determination of nine compounds. The distribution and accumulation of compounds were discussed and illuminated in different parts of P. corylifolia and samples harvested at different times. The characteristics of compounds' variation in flowers and fruits of P. corylifolia were identified. Through the market survey and quantitative study on FP, positive correlation was speculated between transformation from (iso)psoralenoside to (iso)psoralen via β-glucosidase and storage time, which was further confirmed by accelerated stability test. The effect of treated temperatures (40–210 °C) was unveiled on the enzyme activity and transformation from (iso)psoralenoside to (iso)psoralen in FP. And the focused compounds' transformation was mainly driven by β-glucosidase when the temperature was below 120 °C. Above 120 °C, β-glucosidase was completely inactivated, and the focused compounds' transformation was mediated by high-temperature, also the obvious degradation was found. Our results demonstrated that compounds' transformation characteristics arising from the growth, processing and storage of P. corylifolia are critical factors to ensure the quality of FP.  相似文献   

7.
Silver nanoparticles (AgNPs) have attracted considerable attention owing to their unique biological applications. AgNPs synthesized by plant extract is considered as a convenient, efficient and eco-friendly material. In this work, the aqueous extract of Areca catechu L. nut (ACN) was used as the reducing and capping agents for one-pot synthesis of AgNPs, and their antioxidant and antibacterial activities were investigated. UV (Ultra Violet)-visible spectrum and dynamic light scattering (DLS) analysis revealed that the size of AgNPs was sensitive to the synthesis conditions. The synthesized AgNPs were composed of well-dispersed particles with an small size of about 10 nm under the optimal conditions (pH value of extract was 12.0; AgNO3 concentration was 1.0 mM; reaction time was 90 min). In addition, scanning electron microscope with energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) results further verified that the synthesized AgNPs had a stable and well-dispersed form (Zeta potential value of ?30.50 mV and polydispersity index of 0.328) and a regular spherical shape (average size of 15–20 nm). In addition, Fourier transform infrared spectrometry (FTIR) results revealed that phytochemical constituents in ACN aqueous extract accounted for Ag+ ion reduction, capping and stabilization of AgNPs. The possible reductants in the aqueous extract of Areca catechu L. nut were identified by high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (HPLC-ESI-qTOF/MS) method. More importantly, the synthesized AgNPs indicated excellent free radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH, IC50 = 11.75 ± 0.29 μg/mL) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+, IC50 = 44.85 ± 0.37 μg/mL), which were significant higher than that of ascorbic acid. Moreover, AgNPs exhibited an enhanced antibacterial activity against six selected common pathogens (especially Escherichia coli and Staphylococcus aureus) compared with AgNO3 solution. In a short, this study showed that the Areca catechu L. nut aqueous extract could be applied for eco-friendly synthesis of AgNPs.  相似文献   

8.
A series of twelve novel hybrids of cinnamic acid and thiocarbohydrazones were designed, synthesized in high yield using a simple coupling strategy via acid chlorides, and evaluated for their impact against Mycobacterium tuberculosis (Mtb) and cancer cells survival. Among them, compound 3 demonstrated strong anti-Mtb activity by reducing bacilli survival for>90 % in all three treated Mtb isolates, whereas isoniazid and rifampicin did not. Moreover, compound 3 didn’t affect vitality of HepG-2 cells, implying on advantageous hepatotoxicity profile compared to current therapeutic options for tuberculosis. Compounds 2a and 3b displayed as strong inducers of apoptosis in A549 cells, both activating intrinsic caspase pathway and cell cycle arrest at the G0/G1 phase. Subsequent analyses disclosed differences in their activities, where 3b has ability to induce production of mitochondrial superoxide anions, while 2a significantly inhibited cellular mobility. More importantly, 3b considerably affected viability of HepG-2 and HaCaT cells, whereas 2a had moderate impact only on the later. Molecular modeling studies indicated high permeability and good absorption through the human intestine, and moderate aqueous solubility with poor blood–brain barrier permeability. In summary, our results reveal that novel compounds 3 and 2a represent promising agents for tuberculosis and cancer treatment, respectively, indicating that further investigation needs to be performed to clarify the mechanisms of their anti-Mtb and anticancer activity.  相似文献   

9.
The Camellia sinensis plant provides a wide diversity of black, green, oolong, yellow, brick dark, and white tea. Tea is one of the majorly used beverages across the globe, succeeds only in the water for fitness and pleasure. Generally, green tea has been preferred more as compared to other teas due to its main constituent e.g. polyphenols which contribute to various health benefits. The aim of this updated and comprehensive review is to bring together the latest data on the phytochemistry and pharmacological properties of Camellia sinensis and to highlight the therapeutic prospects of the bioactive compounds in this plant so that the full medicinal potential of Camellia sinensis can be realised. A review of published studies on this topic was performed by searching PubMed/MedLine, Scopus, Google scholar, and Web of Science databases from 1999 to 2022. The results of the analysed studies showed that the main polyphenols of tea are the four prime flavonoids catechins: epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) along with the beneficial biological properties of tea for a broad heterogeneity of disorders, including anticancer, neuroprotective, antibacterial, antiviral, antifungal, antiobesity, antidiabetes and antiglaucoma activities. Poor absorption and low bioavailability of bioactive compounds from Camellia sinensis are limiting aspects of their therapeutic use. More human clinical studies and approaching the latest nanoformulation techniques in nanoparticles to transport the target phytochemical compounds to increase therapeutic efficacy are needed in the future.  相似文献   

10.
This study aimed to investigate the beneficial role of Millettia ferruginea extract (MF) in preventing cisplatin (Cisp) induced nephrotoxicity in rats. A total of 55 metabolites were identified using LC-MS analysis. The in vivo results indicated that MF pretreatment for 4 weeks (20 mg/kg b.w.) remarkably attenuated the altered renal biomarkers by decreasing the levels of plasma creatinine, urea, and uric acid when compared to the Cisp-group. The nephroprotective capacity of MF was further strengthened by histopathological observations, where Cisp + MF treated rats showed lower number of inflammatory cells and tubular degenerative changes than the Cisp-group. The harmful effects of cisplatin on renal oxidative stress indicators (MDA, SOD, CAT, and GPx), were restored by the treatment of MF. In addition, the reduction of inflammatory markers (IL-6 and TNF-α), associated with alleviating DNA fragmentation, highlighted the preventive effect of MF in kidney tissue. Additionally, MF components presented lower binding energies when docked into the active site of TNF-α and IL-6. The present findings concluded that M. ferruginea extract exhibited nephroprotective potential, which may be attributed to its antioxidant and anti-inflammatory properties. Further work is recommended to confirm the current results, explore the involved mechanism of action, and determine the therapeutic doses and time.  相似文献   

11.
Chilean Laureliopsis philippiana has been used in traditional medicine by the Mapuche and their ancestors. To evaluate its pharmacological activity, Laureliopsis philippiana leaf essential oil extract (LP_EO) was chemically and biologically characterized in the present study. In vitro antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and tumor cell culture lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the essential oil was analyzed using gas chromatography–mass spectrometry. The oil contains six major monoterpenes: eucalyptol (27.7 %), linalool (27.6 %), isozaphrol (19.5 %), isohomogenol (12.6 %), α-terpineol (7.7 %), and eudesmol (4.8 %). Based on quantum mechanical calculations, isosafrole and isohomogenol conferred in vitro antioxidant and antimicrobial activity to LP_EO. In addition, LP_EO showed antimicrobial activity against clinical Helicobacter pylori isolates (MIC 64 and MBC > 128 μg·mL?1), Staphylococcus aureus (MIC 32 and MBC > 64 μg·mL?1), Escherichia coli (MIC 8 and MBC 16 μg·mL?1) and Candida albicans (MIC 64 and > 128 μg·mL?1). LP_EO could selectively inhibit the proliferation of epithelial tumor cell lines but showed low toxicity against Caenorhabditis elegans (0.39 to 1.56 μg·mL?1). Therefore, LP_EO may be used as a source of bioactive compounds in novel pharmacological treatments for veterinary and human application, cosmetics, or sanitation.  相似文献   

12.
The phytochemical investigation on the chemical constituents of dichloromethane-methanol (1:1) stem-bark extract of Cola lateritia K. Schum. (Sterculiaceae) led to the isolation and characterization of five pentacyclic triterpenoids, one fatty acid and two phytosteroids. The compounds were identified as heptadecanoic acid (1), maslinic acid (2), betulinic acid (3), lupenone (4), lupeol (5), friedelin (6), β-stigmasterol (7) and ß-sitosterol-3-O-ß-D-glucoside (8). Their structures were determined by NMR analysis (1H, 13C, DEPT-135, COSY, HMBC and HSQC), high-resolution mass spectrometry (HR-ESI-MS) and comparisons with published data in the literature. This work, to the best of our knowledge, is the first isolation and identification of these compounds in pure forms from Cola lateritia. Also, compounds 13 are reported for the first time from Cola genus. In vitro antibacterial activity of the isolated compounds (18) and the crude extract were evaluated against Bacillus subtilis, Staphylococcus epidermidis, Enterococcus faecalis, Mycobacterium smegmatis, Staphylococcus aureus, Enterobacter cloacae, Klebsiella oxytoca, Proteus vulgaris, Klebsiella pneumonia, Escherichia coli, Proteus mirabilis and Klebsiella aerogenes with streptomycin, nalidixic acid and ampicillin as standard antibacterial drugs. Compound 2 was active against E. faecalis (MIC = 18.5 µg/mL), and it was 6.9 and 28 times lower and active than that of streptomycin (MIC 128 µg/mL) and nalidixic acid (MIC > 512 µg/mL) respectively. All the isolated compounds and crude extract showed significant activities against the tested bacterial strains.  相似文献   

13.
Artemisia annua L. (A. annua) has been used as herbal medicine in China for thousands of years for clearing deficiency heat, treating malaria and removing jaundice. A rapid, sensitive and specific liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS) method was developed, validated, and successfully used for simultaneous quantification of the active components in rat plasma after oral administration of A. annua extract. Molecular docking of each component with drug metabolizing enzymes was carried out to explore the effect of each component on CYP-mediated drug metabolism. Two coumarins (scopolin (SPL) and scopoletin (SPLT)), three flavonoids (rutin (RUT), chrysosplenol D (CHD), casticin (CAS)) and three sesquiterpenes (arteannuin B (ARN), dihydroartemisinic acid (DARM) and artemisinic acid (ARM)) were detected in rat plasma after oral administration. CHD and CAS were rapidly absorbed into rat blood with the Tmax values of 0.11 ± 0.04 h and 0.13 ± 0.05 h, respectively. Their half-lives (t1/2 2.68 ± 3.62 h and 0.33 ± 0.07 h) were shorter. SPLT were also rapidly absorbed into the blood (Tmax 0.15 ± 0.03 h), but exhibited a longer half-life (t1/2 6.53 ± 1.84 h), indicating that it could be effective in vivo for a longer period of time. The peak time of SPL, RUT, DARM and ARM ranged from 1 ~ 4 h, demonstrating that they could maintain considerable concentrations for a longer time. ARN showed strong enterohepatic circulation in rats, leading to slower onset time and longer effect. A few components including SPLT, CHD, CAS and ARN could be metabolized into their corresponding II phase metabolites combining with glucuronic acid or sulfuric acid. RUT could decompose its glycosyl to generate genin. The molecular docking results indicated that those flavonoids and coumarins of A. annua interacting with CYPs mainly through hydrogen bonding and π-π stacking had better CYP450 enzyme binding ability than the sesquiterpenoids, which were easier to induce drug interactions. This study presented an integrated strategy for investigating the pharmacokinetic behaviors of eight components in A. annua and laid the foundation for revealing the mechanism of action of A. annua in the organism.  相似文献   

14.
15.
The chemical investigation of the ethyl acetate extract of the stem bark of Staudtia kamerunensis and sap led to the isolation of six compounds which included three isoflavonoids: biochanin A (1), formononetin (2) and 3-(1,3-benzodioxol-5-yl)-5,6,7-trimethoxy-4H-1-benzopyran-4-one (3), one flavonoid: (-) epicatechin (4) and two pentacyclic triterpenoids (oleanan-12-ene-2α,3β -diol (5) and 2α,3β-dihydroxylup-20-ene (6). They were characterized by HREIMS (High Resolution Electron Ionisation Mass Spectrometry), NMR spectroscopy (1D and 2D) and comparison with existing data in literature. The crude extract and isolates were tested against twelve bacterial strains namely; Bacillus subtilis, Staphylococcus epidermidis, Enterococcus faecalis, Mycobacterium smegmatis, Staphylococcus aureus, Enterobacter cloacae, Klebsiella oxytoca, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, Proteus mirabilis and Klebsiella pneumonia. Streptomycin, nalidixic acid and ampicillin were used as standard antibacterial drugs. The results revealed significant antibacterial activity for both the ethyl acetate partition and for the tested compounds, with the lowest MIC value being 15.625 μg/mL. A synergistic activity of the isolated triterpenoids was evaluated with interesting results. On a general note, the antibacterial activity of compound 5 was doubled specifically against Gram-negative bacterial strains. This could be a therapeutic antimicrobial pathway in face of the rising bacterial resistance. To the best of our knowledge, it is the first time that flavonoids and triterpenoids are isolated from this genus and species. It is also the first report of antibacterial studies on this species.  相似文献   

16.
Inspired by the wide application of amides in plant pathogens, a series of novel 1-substituted-5-trifluoromethyl?1H?pyrazole-4-carboxamide derivatives were designed and synthesized. Bioassay results indicated that some target compounds exhibited excellent and broad-spectrum in vitro and certain in vivo antifungal activities. Among them, the in vitro EC50 values of Y13 against G. zeae, B. dothidea, F. prolifeatum and F. oxysporum were 13.1, 14.4, 13.3 and 21.4 mg/L, respectively. The in vivo protective activity of Y13 against G. zeae at 100 mg/L was 50.65%. SAR analysis revealed that the phenyl on the 1-position of the pyrazole ring was important for this activity. An antifungal mechanism study of Y13 against G. zeae demonstrated that this compound may disrupt the cell membrane of mycelium, thus inhibiting the growth of fungi. These mechanistic study results were inconsistent with those for traditional amides and may provide a novel view for deep study of this series of pyrazole carboxamide derivatives.  相似文献   

17.
Dendrobium nobile alkaloids (DNLA) and glycosides are the main active components extracted from Dendrobium nobile Lindl. (D. nobile) used for thousands of years in China. The pharmacological effects of the above chemical components are significantly different. D. nobile is mainly grown at an altitude ranging from 230 to 800 m in Chishui City, Northwest Guizhou Province. However, it is unclear whether the metabolite in D. nobile is influenced by the planting altitude. Hence, to reveal the different metabolite in D. nobile cultivated at the altitude of 336 m, 528 m, and 692 m, ultra-high performance liquid chromatography with Q/TOF-MS couple with multivariate analysis were developed. Using the orthogonal partial least squares-discriminant analysis, 19 different metabolites were discovered and then tentatively assigned their structures as alkaloids and glycosides by comparing mass spectrometry data with in-house database and literature. Moreover, the result of semiquantitative analysis showed the content of dendrobine that was belonged to alkaloids significantly increased at the altitude of 692 m, whereas the content of glycosides demonstrated an accumulation trend at the altitude of 528 m. The results could provide valuable information for the optimal clinical drug therapeutics and provide a reference for quality control.  相似文献   

18.
Syzygium brachythyrsum is an important folk medicinal and edible plant in Yunnan ethnic minority community of China, however, little is known about the chemical and bio-active properties. The present study is aimed to identify the bioactive constituents with antioxidant and anti-inflammatory properties by an integrating approach. First, two new bergenin derivatives, brachythol A (1) and brachythol B (2), together with eleven known phenolic compounds (3–13) were isolated from bioactive fractions by phytochemical method. Among these isolated chemicals, five bergenin derivatives, along with 3 phenolics were found in Syzygium genus for the first time. Then, a further chemical investigation based on ultra-high-performance liquid chromatography-Q Exactive Orbitrap mass spectrometry resulted in a total of 107 compounds characterized in the bio-active fractions, including 50 bergenin derivatives, among which 14 bergenin derivatives and 14 phenolics were potential new natural chemicals. Most of the isolated compounds showed obvious antioxidant activities, while compounds 11, 12, and 13 had favorable performance. Eight compounds (2–5, 7, and 9–11) showed good inhibitory activity on nitric oxide (NO) production in macrophage RAW 264.7 cells. The structure–activity correlation analysis indicated that the antioxidation and anti-inflammatory activities enhanced when bergenin was esterified with gallic acid, caffeic acid or ferulic acid. This is the first report of bergenins in Syzygium genus and the richness in new bio-active bergenins and gallic acid derivatives indicated that Syzygium brachythyrsum is a promising functional and medicinal resource.  相似文献   

19.
Yinlan lipid regulatory capsule (YL) is a composite traditional Chinese medicine (TCM) new drug to alleviate hyperlipidemia, while its therapeutic mechanism in vivo was not clarified with nontargeted metabolomics investigation. An animal model was established in rats fed a high-fat diet, and their body weights, body mass index (BMI) and blood cholesterol levels were measured. Serum, liver and kidney tissue samples were also extracted for PXR-CYP3A4-ABCB1-FXR signaling pathway research using PCR and UHPLC–MS. The obtained plasma samples were analyzed by UHPLC-Q-TOF-MS metabolomic investigation, which revealed PXR-CYP3A4-related metabolites and changes induced by YL. Finally, the key metabolites were chosen as index components, and their levels in the serum, liver, small intestine and bile were used for simultaneous UHPLC–MS-MS determination. The results indicated that YL was effective in rebalancing blood TG and TC levels (compared to controls). With respect to the PXR-CYP3A4-ABCB1 pathway, as a result of YL’s effect, gene expression or activity of the two targets decreased significantly in both the liver and kidney. The same trend was observed in the serum samples mentioned above. Metabolomics screening and data revealed that 44 metabolites can be regarded as biomarkers related to hyperlipidemia, fatty acids synthesis, and body energy consumption, as well as synthesis, transportation and exertion of cholesterol. YL’s treatment focused on 26 of them, primarily bile acids, indicating that the antihyperlipidemic effect of this drug lies in its inhibitory activity of cholesterol metabolism. Subsequent analysis of those in vivo components revealed that significant increases (compared to the model group) occurred in the blood, liver, small intestine and bile in groups that received medium and high doses of YL (while the low dose was relatively unchanged). Those target components exhibit a close relationship with PXR and/or CYP3A4. The use of YL repressed PXR expression and subsequently decreased CYP3A4 activity. As a result, synthesis of related bile acids increased, while cholesterol levels decreased, consequently leading to the attenuation of hyperlipidemia. This study comprehensively investigated the antihyperlipidemia mechanism of YL based on its repression of PXR-CYP3A4 activity and related metabolite yield, establishing an accurate method for evaluating the therapeutic effect of YL.  相似文献   

20.
In this study, a series of trifluoromethyl pyrimidine derivatives 5a-5v were designed and synthesized. All synthetic compounds were original. Bioassay results showed that some of the target compounds were proved to have higher antiviral and antifungal activities than those of commercial agents. Especially, EC50 values of the curative activity of compound 5j and the protection activity of compound 5m were 126.4 and 103.4 µg/mL, respectively, which were lower than that of ningnanmycin. Microscale thermophoresis experiment proved that there was a good interaction between compound 5m and TMV-CP. Meanwhile, the antifungal activity results showed that compound 5u had a significant on in vitro against Rhizoctonia solani (RS) activity, with the EC50 value of 26.0 µg/mL, which was equal to that of azoxystrobin. As well, in vivo experiments on rice leaves showed that compound 5u could effectively control RS, and the effect of 5u on the cell morphology of RS was observed by scanning electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号