首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
采用铁碳微电解和Fenton法联合工艺处理实际印染废水,研究pH、反应时间、Fe/C体积比、H2O2浓度对实际印染废水脱色率及COD去除率的影响规律,并优化了联合技术的最佳工艺条件.试验结果表明:在短期时间内,Fe/C体积比和H2O2浓度对废水的处理效果影响最显著,最佳工艺条件为进水pH=4,Fe/C体积比为1∶1,H2O2的投加量20ml/L,反应时间30min,COD的去除率可以达到97%以上,色度的去除率达到99%以上.  相似文献   

2.
目的研究UV/Fenton氧化法中各个因素对去除水中苯酚的影响,确定UV/Fenton法处理苯酚废水的工艺条件.方法保持UV/Fenton体系的基准条件不变,通过改变H2O2投加量、Fe2+浓度、废水初始pH值、载气等试验条件,考查这些因素对UV/Fenton法处理苯酚废水效果的影响.结果UV/Fenton氧化法对苯酚废水有较好的去除效果和较高的反应速率.当废水初始pH值为3.0时,经30 min反应,苯酚去除率达到99%,COD去除率达到86%.苯酚废水COD去除率滞后于苯酚去除率.结论UV/Fenton法能够在较短的时间内去除苯酚含量,COD、H2O2投加量、Fe2+浓度对处理效果影响较大,H2O2投加量决定苯酚去除率和COD去除率,而Fe2+质量浓度是影响去除速率的主导因素.  相似文献   

3.
Fe/C微电解法处理压裂废水的研究   总被引:5,自引:0,他引:5  
首次将Fe/C微电解用于处理混凝后的压裂废水,分别考察了微电解pH值、停留时间、Fe/C体积比、铁屑粒度、氯化铵加量对Fe/C微电解的影响程度,并通过计算确定了铁屑消耗量。实验结果表明,在pH值为2,停留时间取25min,Fe/C体积比为1~1.5,铁屑粒度为60~80目,氯化铵加量为1000mg/L时,经过Fe/C微电解,压裂废水色度去除率接近100%,COD去除率可达58%,处理每方压裂废水消耗铁屑约0.28kg。  相似文献   

4.
采用Fenton法和类Fenton法预氧化处理模拟PVA废水,探索了影响预氧化的因素,并用活性污泥法考察了预氧化对废水可生化降解性能的影响。结果表明,Fenton法在最佳条件下(t=30 min,pH=4,n(H2O2)∶n(Fe2+)=10,T=35℃)预氧化后模拟废水的BOD5/CODCr值由0.064升为0.603;类Fenton法在最佳条件下(t=30 min,pH=4,n(H2O2)∶n(Fe2+)=6,T=35℃)预氧化后的BOD5/CODCr值由0.064升到0.606,2种方法都有效提高了模拟PVA废水的可生化降解性,类Fenton法预氧化比Fenton法预氧化在达到基本相同结果时节省H2O2用量39%。经与活性污泥法联合处理,类Fenton法预氧化处理的模拟PVA废水的可生化性更好,CODCr去除率由未经预处理时的20%提高到95%。  相似文献   

5.
铁碳微电解技术处理实际印染废水   总被引:2,自引:0,他引:2  
针对印染废水水质波动大、有机成分复杂且难降解的问题,采用铁碳微电解技术对印染废水进行预处理,以达到降低印染废水浓度并提高其可生化性的目的.选用市售铁碳填料对实际印染废水进行微电解处理,通过单因素实验获得最佳反应条件.结果表明,在曝气条件下当铁碳填料质量与废水体积的配比为1∶2,初始p H值为3,废水停留时间为120 min时,印染废水的COD去除率可达52.74%,B/C比可以提高至0.53.因此,利用铁碳微电解技术处理印染废水具有明显优势,且能够提高废水的可生化性.  相似文献   

6.
臭氧高级氧化技术处理酸性红B染料废水   总被引:4,自引:0,他引:4  
目的研究臭氧氧化技术处理酸性红B染料废水的效果,并探讨O3投加量、废水的初始pH值、H2O2和O3物质的量比对臭氧氧化处理酸性红B染料废水效果的影响.方法依据臭氧高级氧化的机理,在实验室反应器中通过实验考察在臭氧氧化处理酸性红B染料废水过程中,控制不同的O3投加量、废水的初始pH值、H2O2和O3物质的量比对酸性红B染料废水的色度和COD去除率的影响.结果在pH=7的条件下,单一臭氧氧化30 m in时,废水的色度和COD去除率分别为99.5%和37.9%;而废水的初始pH值控制在11左右时,COD去除率有较大提高.O3/H2O2氧化工艺,适宜的H2O2和O3物质的量比为0.6,氧化处理30 m in废水的COD去除率可达53.5%.结论O3高级氧化能够有效降解酸性红B染料废水,在臭氧反应体系中投加H2O2可以明显提高降解速率,缩短处理时间,降低O3耗量.  相似文献   

7.
对H2O2/Fe(Ⅱ)(芬顿试剂)和PAM协同处理含柠檬酸废水的效果进行了研究,主要考察了PAM的投加量与时间、pH、吸附时间以及吸附温度等几个重要条件对处理效率的影响。实验结果表明,用PAM处理H2O2/Fe(Ⅱ)氧化后的柠檬酸废水比H2O2/Fe(Ⅱ)与PAM同时加入处理具有更好的处理效果。PAM吸附反应的最佳条件:温度为35℃,pH=2,PAM质量浓度为0.06 g/L,反应时间为30 min时,CODCr的去除率为92.70%,达到最高。  相似文献   

8.
UV-vis/草酸铁络合物/H2O2法处理苯胺类研究   总被引:2,自引:0,他引:2  
UV-vis/草酸铁络合物/H2O2法是一种高级氧化工艺,这个工艺产生的羟自由基·OH是一种很强的氧化剂,能很快和水中有机物发生反应.以联苯胺、邻联甲苯胺、邻甲苯胺、3,3-二甲氧基联苯胺和对苯二胺为处理对象,对UV-vis/草酸铁络合物/H2O2法的氧化能力和效果进行了全面系统试验研究,并确定了UV-vis/草酸铁络合物/H2O2法降解苯胺类化合物的最佳工艺条件为:pH=3.0~4.0;Fe2+∶H2O2∶C2O42-=1∶4~5∶10~12(mmol/L).结果表明:UV-vis/草酸铁络合物/H2O2法处理高浓度苯胺类化合物废水是非常有效的,16min内苯胺类化合物去除率均在95%以上.  相似文献   

9.
UV/Fenton光氧化降解活性艳红染料废水的试验研究   总被引:1,自引:1,他引:1  
目的研究UV/Fenton法对活性艳红染料废水色度和COD的处理效果,解决染料废水色度和COD难降解的问题.方法通过比较不同反应体系的处理效果,验证了UV/Fenton氧化法的优越性.并对影响UV/Fenton氧化法处理废水效果的主要操作条件进行了试验研究,确定了反应的最佳操作条件.结果研究表明,H2O2投加量、Fe2 投加量、pH值条件的改变对染料废水的处理效果影响很大.当pH=3,30%H2O2投加的体积分数为2.4 mL/L,Fe2 投加的质量浓度为320 mg/L,反应时间为15 min时为氧化反应的最佳操作条件,脱色率和COD去除率分别达99.41%和93.21%.结论UV/Fenton法对染料废水的色度和COD能够进行有效的去除,并且操作简单.但是,该法在大规模的应用上仍然存在一定的局限性,如pH应用范围窄、二次污染问题等.  相似文献   

10.
以环氧丙烷废水为研究对象初步研究了H2O2预氧化作为预处理的最佳试验条件以及预氧化 生物接触氧化工艺处理效果.结果表明,H2O2预氧化法预处理环氧丙烷废水取得了良好效果,经预处理后,COD总去除率可达到92%,提高了废水的可生化性.  相似文献   

11.
US/H2O2组合工艺催化降解苯酚水溶液的研究   总被引:14,自引:0,他引:14  
研究了苯酚水溶液在超声波/过氧化氢(US/H2O2)复合氧化工艺条件下的降解效果及机理.详细讨论了H2O2体积质量、苯酚初始体积质量、溶液初始pH和外加Fe2+等因素对US/H2O2工艺氧化降解苯酚的影响.结果表明:在单独的超声波辐照或者过氧化氢氧化下苯酚去除率很小,而在组合氧化过程US/H2O2工艺中有显著的提高;苯酚降解的拟一级动力学速率常数增强因子可达到6.904,存在明显的协同效应  相似文献   

12.
微电解法对废水脱氮处理的研究   总被引:2,自引:0,他引:2  
为解决传统生物脱氮工艺存在的流程长、运行费用高、脱氮率低等问题,采用微电解法对高含氮废水脱氮处理进行研究.在原电池的基础上,用铁炭微电解法对NO2--N进行还原到氮气,最终达到废水脱氮的目的.着重分析pH、m(Fe)/m(C)、反应时间、混凝条件等反应条件对NO2--N和TN去除率的影响.同时,从经济效益方面与传统脱氮工艺进行分析比较.结果表明:微电解法控制进水pH为1.5~3.0,水力停留时间为60 min,m(Fe)/m(C)为1.1∶1.0,混凝pH为8.5~9.0和沉降时间为40 min时,NO2--N的去除率可高达75%以上,TN的去除率可达52%左右.微电解法对各种高含氮废水的脱氮处理是切实可行的,并且用废刚玉粉末取代活性炭,可以获得以废治废的环境效益和经济效益.  相似文献   

13.
采用电生H2O2协同电解絮凝法处理餐饮废水,研究了废水初始浓度、电解时间、电压、电极材料、pH等因素对降解餐饮废水的影响.结果表明,进水CODCr在1200mg/L以内、pH值为中性的餐饮废水,在10V电压、电磁搅拌、曝气条件下,电解15min后,COD去除率在80%以上.该法利用了铝阳极反应生成的絮凝剂Al(OH)3和阴极上电合成的H2O2对有机物的去除作用,同时阳极产生的H^ 与阴极产生的OH^-中和又促进了两极的反应,使有机物降解更彻底.  相似文献   

14.
UV/Fenton氧化法处理硝基苯废水的试验研究   总被引:1,自引:2,他引:1  
目的研究UV/Fenton氧化法对难降解有机物硝基苯的氧化能力,确定UV/Wenton氧化法处理硝基苯处理废水的工艺条件.方法以自配硝基苯水样为处理对象,采用自制光反应器,通过试验研究分析H2O2投加量、Fe^2+质量浓度、反应时间、pH值、硝基苯初始质量浓度等对UV/Fenton氧化法处理硝基苯废水处理效果的影响.结果实验研究结果表明,UV/Fenton氧化法对硝基苯有较高的去除率和反应速率,硝基苯的去除率可达到95%.H2O2投加量、Fe^2+质量浓度、反应时间、pH值和硝基苯初始质量浓度对处理效果均有较大影响.结论硝基苯的质量浓度在不大于200mg/L时,UV/Fenton法能够有效去除硝基苯,最佳反应条件为:H2O2倍数为1.5左右,Fe^2+与H2O2的摩尔比为1:30。pH值为4左右,反应时间为50min.  相似文献   

15.
Fenton氧化与吸附法联合处理焦化废水的研究   总被引:7,自引:5,他引:7  
目的为了寻求一种行之有效的焦化废水处理新技术.方法利用Fenton氧化预处理联合活性炭吸附后续处理,以焦化废水的COD为考察指标,通过研究H2O2投加量、pH值、反应时间、[Fe^2+]/[H2O2](摩尔比)等因素对Fenton氧化预处理阶段处理效果的影响,确定Fenton氧化预处理阶段的操作条件;通过研究活性炭投加量、活性炭吸附时间、pH值等因素对后续活性炭吸附阶段处理效果的影响,确定活性炭吸附阶段的操作条件.结果实验表明,Fenton氧化-活性炭吸附联合工艺的最佳操作条件为:先在H2O2投加量为158mmol/L,[Fe^2+]/[H2O2]=1:10,初始pH=3的条件下Fenton氧化预处理30min,然后投加1g/L活性炭吸附处理30min.结论在最佳操作条件下,Fenton氧化-活性炭吸附联合工艺处理焦化废水取得了良好的效果,处理后焦化废水COD由1935mg/L降为46.4mg/L,去除率达到97.6%,为该工艺的工业化应用提供了实验依据,同时对其他工业废水的处理具有借鉴意义.  相似文献   

16.
光助氧化法降解印染废水的应用性研究   总被引:3,自引:0,他引:3  
对光助氧化法处理印染废水进行了实验研究.探讨了单纯的紫外光光照时间、H2O2浓度、印染水溶液的初始pH值以及Fenton试剂中H2O2的浓度和Fe2 比值对CODCr去除率和脱色率的影响.结果表明:光助氧化法对印染废水有比较好的处理效果,单纯紫外光照射6 h,脱色率和CODCr去除率分别为68.8%和19.9%;当加入6 mmol/L H2O2并光照80 min后,两者分别上升为90.7%和74.3%;在同样的条件下,再调整废水使其pH=3,脱色率和CODCr去除率高达92.8%和84.4%;加入Fenton试剂并保持Fe2 ∶H2O2=1∶5,尽管由于Fe2 及Fe3 的存在,脱色率下降为87.5%,而CODCr去除率升高到92.5%.  相似文献   

17.
Fenton试剂氧化处理印染废水   总被引:2,自引:0,他引:2  
采用Fenton试剂对某染袜厂两股含阳离子染料的印染废水进行了处理。考察了反应时间、双氧水用量、硫酸亚铁用量以及pH对印染废水的色度及COD去除率的影响。又通过正交实验确定了Fenton试剂处理该废水的最佳操作条件。结果表明 ,随着反应时间的延长 ,色度及COD去除率增大 ,最佳反应时间为 30min ;色度及COD的去除率随着双氧水 (30 % )的用量增加而增大 ,最佳用量为 4mL/L ;硫酸亚铁最佳用量为 30 0mg/L ;最佳 pH值为 4.0。在最佳实验条件下 ,COD浓度为 6 5 0mg/L的废水经氧化处理后可达标排放 ,COD值为 12 0 0mg/L的废水 ,需经絮凝预处理后再用Fenton试剂氧化 ,方可达标排放  相似文献   

18.
紫外/过氧化氢对含氮染料废水的处理   总被引:1,自引:0,他引:1  
纺织印染废水的降解主要是针对含氮染料废水的处理,利用UV/H2O2的工艺方法处理含氮活性染料活性黑5号(Reactive B lack 5(RB5))的印染废水,研究染料RB5降解过程中过氧化氢浓度及紫外光强度对染料RB5废水降解程度的影响.结果表明,印染废水的降解分为脱色和分解两步进行.  相似文献   

19.
检测了鲱精DNA水溶液及其经过1%、2%和3%H2O2处理48h的拉曼光谱图.实验结果表明DNA在水溶液中同时具有A、B两种构象,但以B型构象为主.经H2O2处理后,DNA水溶液的A型构象有所增强,碱基堆积程度下降.H2O2对碱基和脱氧核糖几乎没有损伤,对DNA的主链结构也只造成很轻微的损伤.由此可见H2O2本身对DNA的损伤是很小的,只有在外界因素诱发下H2O2经反应生成HO.才会给DNA造成严重损伤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号