首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.
In this work,a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions.The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals,high speed photography,and optical emission spectroscopic diagnostics.Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g.,10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone,in this RGA system,a lower gas flow rate (e.g.,2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions.Two different motion patterns can be clearly observed in the N2 and air RGA plasmas.The time-resolved arc voltage signals show that three different arc dynamic modes,the arc restrike mode,takeover mode,and combined modes,can be clearly identified in the RGA plasmas.The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.  相似文献   

2.
One-step controllable synthesis of vertical graphene nanosheets (VGs) and high-value gases was achieved using inductively coupled plasma enhanced chemical vapor deposition (ICPECVD). The basic physical properties of the ICPECVD process were revealed via electrical diagnosis and optical emission spectroscopy. The coil current and voltage increased linearly with the augmenting of injected power, and CH, C2, H2 and H were detected at a wavelength from 300 to 700 nm, implying the generation of abundant graphene-building species. The morphology and structure of solid carbon products, graphene nanosheets, were systemically characterized in terms of the variations of operating conditions, such as pressure, temperature, gas proportion, etc. The results indicated that an appropriate operating condition was indispensable for the growth process of graphene nanosheets. In the present work, the optimized result was achieved at the pressure, heating temperature, applied power and gas proportion of 600mTorr, 800 °C, 500 W and 20:20:15, respectively, and the augmenting of both CH4 and H2 concentrations had a positive effect on the etching of amorphous carbon. Additionally, H2 and C2 hydrocarbons were detected as the main exhaust gases. The selectivity of H2 and C2H2 , measured in exhaust gases, reached up to 52% and 8%, respectively, which implied a process of free radical reactions and electron collision dissociation. Based on a comprehensive investigation of spectral and electrical parameters and synthesized products, the reaction mechanism of collision, dissociation, diffusion, etc, in ICPECVD could be speculated, providing a probable guide for experimental and industrial applications.  相似文献   

3.
At the ambient temperature and pressure a glow discharge plasma was used as a new approach for the coupling of methane with the newly-developed rotary multidentate helix electrode. In the presence of hydrogen, the effects of the input peak voltages and gas flow rates on methane conversion, C2 single pass yield and selectivity were investigated, and then the results were compared with those from the three-disc multidentate electrode. This demonstrated, on an experimental scale, that the rotary multidentate helix electrode was better than the multidentate three-disc electrode as there was little accumulation of coke, and the C2 yield per pass was 69.85% and C2 selectivity over 99.14% with 70.46% methane conversion at an input peak voltage of 2300 V and 60 ml/min gas flow rate.  相似文献   

4.
用Garfield、Magboltz和Heed程序包对4种氦基混合气:He/CH4(60/40)、He/C2H6(50/50)、He/C3H8(60/40)和He/iC4H10(80/20)的主要性能(包括电子漂移速度、电子扩散和洛伦兹角)以及小单元漂移室在上述4种混合气中的漂移性能进行了模拟研究。同时比较了两种不同尺寸小单元结构在He/C3H8(60/40)下的性能。  相似文献   

5.
Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out,and the influence of CO2 flow rate,plasma power,discharge voltage,discharge frequency on CO2 conversion and process energy efficiency were investigated.It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap,and the electron amount was proportional to the discharge power;the energy efficiency of CO2 conversion was almost a constant at a lower level,which was limited by CO2 inherent discharge character that determined a constant gap electric field strength.This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased.Therefore,one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma,but the energy efficiency is difficult to improve.  相似文献   

6.
In this study, we report on the degradation of microcystin-LR (MC-LR) by gas- liquid interracial discharge plasma. The influences of operation parameters such as average input voltage, electrode distance and gas flow rate are investigated. Experimental results indicate that the input voltage and gas flow rate have positive influences on MC-LR degradation, while the electrode distance has a negative one. After 6 min discharge with 25 kV average input voltage and 60 L/h air aerati by discharge both in on, the degradation rate of MC-LR achieves 75.3%. distilled water and MC-LR solution are measured H202 and 03 generated Moreover, an emission spectroscopy is used as an indicator of the processes that take place on the gas-liquid boundary and inside plasma. Varied types of radicals (O, .OH, CO, 03, etc.) are proved to be present in the gas phase during gas-liquid interfacial discharge.  相似文献   

7.
The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigated.The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge,particularly at flow rate =21 min-1.When the current was lower than 140 mA,sinusoidal waveforms with regular variation periods of 13.5-17.0 ms can be observed (flow rate =21 min-1).The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions.Increasing the flow rate from 8 to 121 min-1 (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120-200 V).For a given flow rate,the reduction of current resulted in a nearly linear increase of voltage.  相似文献   

8.
In this study,we investigated the effects of the quartz tube diameter,air flow rate,and applied voltage on the characteristics of an air plasma jet to obtain the optimized discharge characteristics.The physicochemical properties and concentration of reactive oxygen and nitrogen species(RONS)in plasma-activated medium(PAM)were characterized to explore their chemical activity.Furthermore,we investigated the inactivation effect of air plasma jet on tumour cells and their corresponding inactivation mechanism.The results show that the tube diameter plays an important role in sustaining the voltage of the air plasma jet,and the gas flow rate affects the jet length and discharge intensity.Additionally,the air plasma jet discharge displays two modes,namely,ozone and nitrogen oxide modes at high and low gas flow rates,respectively.Increasing the voltage increases the concentration of reactive species and the length of discharge.By evaluating the viability of A549 cells under different parameters,the optimal treatment conditions were determined to be a quartz tube diameter of 4 mm,gas flow rate of 0.5 SLM,and voltage of 18 kV.Furthermore,an air plasma jet under the optimized conditions effectively enhanced the chemical activity in PAM and produced more aqueous RONS.The air plasma jet induced significant cytotoxicity in A549 cancer cells after plasma treatment.H2O2 and NO2 are regarded as key factors in promoting cell inactivation.The present study demonstrates the potential use of tumour cell therapy by atmospheric air PAM,which aids a better understanding of plasma liquid chemistry.  相似文献   

9.
Recently, a plasma catalyst was employed to efficiently degrade antibiotic residues in the environment. In this study, the plasma generated in a packed bed dielectric barrier reactor combined with TiO2 catalyst is used to degrade the antibiotic tiamulin (TIA) loaded on the surface of simulated soil particles. The effects of applied voltage, composition of the working gas, gas flow rate and presence or absence of catalyst on the degradation effect were studied. It was found that plasma and catalyst can produce a synergistic effect under optimal conditions (applied voltage 25 kV, oxygen ratio 1%, gas flow rate 0.6 l min−1, treatment time 5 min). The degradation efficiency of the plasma combined with catalyst can reach 78.6%, which is 18.4% higher than that of plasma without catalyst. When the applied voltage is 30 kV, the gas flow rate is 1 l min−1, the oxygen ratio is 1% and the plasma combined with TiO2 catalyst treats the sample for 5 min the degradation efficiency of TIA reached 97%. It can be concluded that a higher applied voltage and longer processing times not only lead to more degradation but also result in a lower energy efficiency. Decreasing the oxygen ratio and gas flow rate could improve the degradation efficiency. The relative distribution and identity of the major TIA degradation product generated was determined by high-performance liquid chromatography–mass spectrometry analysis. The mechanism of TIA removal by plasma and TiO2 catalyst was analyzed, and the possible degradation path is discussed.  相似文献   

10.
In this paper, N-doped diamond-like carbon(DLC) films were deposited on silicon substrates by using helicon wave plasma chemical vapor deposition(HWP-CVD) with the Ar/CH_4/N_2 mixed gas. The surface morphology, structural and mechanical properties of the N-doped DLC films were investigated in detail by scanning electron microscopy(SEM), x-ray photoelectron spectroscopy(XPS), Raman spectra, and atomic force microscopy(AFM). It can be observed from SEM images that surface morphology of the films become compact and uniform due to the incorporation of N. The maximum of the deposition rate of the films is 143 nm min~(-1), which is related to the high plasma density. The results of XPS show that the N incorporates in the films and the C-C sp~3 bond content increases firstly up to the maximum(20%) at 10 sccm of N_2 flow rate, and then decreases with further increase in the N_2 flow rate. The maximum Young's modulus of the films is obtained by the doping of N and reaches 80 GPa at 10 sccm of N_2 flow rate, which is measured by AFM in the scanning probe microscope mode. Meanwhile, friction characteristic of the N-doped DLC films reaches a minimum value of 0.010.  相似文献   

11.
Atmospheric pressure air/Ar/H_2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic(OES) diagnostic technique is used for the characterization of plasmas and for identifications of OH and O radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation Tx?≈?5550–9000 K, rotational Tr?≈?1350–2700 K and gas Tg?≈?850–1600 K temperatures, and electron density n?(1.1-1.9) ′101 4 cm~(-3) e under different experimental conditions. The production and destruction of OH and O radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of OH and O radicals indicate that their production rates are increased with increasing Ar content in the gas mixture and applied voltage. nereveals that the higher densities of OH and O radicals are produced in the discharge due to more effective electron impact dissociation of H_2O and O_2 molecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced n e.The productions of OH and O are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, Tgsignificantly reduces with the enhanced air flow rate. This investigation reveals that Ar plays a significant role in the production of OH and O radicals.  相似文献   

12.
In this study, Co/Zr-metal organic framework(MOF) precursors were obtained by a roomtemperature liquid-phase precipitation method and the equivalent-volume impregnation method,respectively, using a Zr-MOF as the support, and Co/Zr-MOF-M and Co/Zr-MOF-N catalysts were prepared after calcination in a hydrogen–argon mixture gases(V_(Ar):V_(H_2)= 9: 1) at 350 °C for 2 h. The catalytic activities of the prepared samples for CO_2 methanation under atmosphericpressure cold plasma were studied. The results showed that Co/Zr-MOF-M had a good synergistic effect with cold plasma. At a discharge power of 13.0 W, V_(H_2):V_(CO_2)= 4: 1 and a gas flow rate of 30 ml·min~(-1), the CO_2 conversion was 58.9% and the CH_4 selectivity reached 94.7%,which was higher than for Co/Zr-MOF-N under plasma(CO_2 conversion 24.8%, CH_4 selectivity 9.8%). X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N_2 adsorption and desorption(Brunauer–Emmett–Teller) and x-ray photoelectron spectroscopy analysis results showed that Co/Zr-MOF-M and Co/Zr-MOF-N retained a good Zr-MOF framework structure, and the Co oxide was uniformly dispersed on the surface of the Zr-MOF. Compared with Co/Zr-MOF-N, the Co/Zr-MOF-M catalyst has a larger specific surface area and higher Co~(2+)/Cototaland Co/Zr ratios. Additionally, the Co oxide in Co/ZrMOF-M is distributed on the surface of the Zr-MOF in the form of porous particles, which may be the main reason why the catalytic activity of Co/Zr-MOF-M is higher than that of Co/ZrMOF-N.  相似文献   

13.
以(CH_3)_3SiOH羟基模拟Li_4SiO_4陶瓷表面羟基,研究了H_2O与(CH_3)_3SiOH羟基H的氢交换反应机理.采用HF, MP2方法,在3-21G和6-311G++H~(**)水平上优化了(CH_3)_3SiOH, H_2O, (CH_3)_3SiOH-H_2O复合物及氢交换反应过渡态的结构.计算了生成(CH_3)_3SiOH-H_2O复合物的反应热,探讨了氢交换反应的路径.结果表明,可以形成2种形式的(CH_3)_3SiOH-H_2O复合物,一种是H_2O的O原子与(CH_3)_3SiOH羟基的H原子作用形成的复合物,另一种是H_2O的H原子与(CH_3)_3SiOH羟基的O原子作用形成的复合物.MP2/6-311G++~(**)水平上,对基组重叠能(BSSE)进行校正后,上述2种复合物的反应热分别为20.046 5 kJ/mol和21.630 7 kJ/mol.有利的氢交换反应路径为:H_2O的H原子与(CH_3)_3SiOH羟基的O原子作用形成的复合物,然后H2O提供1个H原子、1个O原子,(CH_3)_3SiOH提供1个O原子、1个Si原子形成由O, H, O, Si 4个原子构成的四元环过渡态,最后H_2O的O原子与(CH_3)_3SiOH 的Si原子成键形成新的(CH_3)_3SiOH,而(CH_3)_3SiOH的Si-O键断裂,由(CH_3)_3SiOH的羟基和H_2O的1个H原子形成新的H_2O分子,MP2/6-311G++~(**)水平上,BSSE校正后,此路径的反应活化能为186.898 4 kJ/mol.  相似文献   

14.
In this paper,the dielectric properties of CO_2,CO_2/air,CO_2/O2,CO_2/N_2,CO_2/CF_4,CO_2/CH_4,CO_2/He,CO_2/H_2,CO_2/NH_3 and CO_2/CO were investigated based on the Boltzmann equation analysis,in which the reduced critical electric field strength(E/N)crof the gases was derived from the calculated electron energy distribution function(EEDF) by solving the Boltzmann transport equation.In this work,it should be noted that the fundamental data were carefully selected by the published experimental results and calculations to ensure the validity of the calculation.The results indicate that if He,H_2,N_2 and CH_4,in which there are high ionization coefficients or a lack of attachment reactions,are added into CO_2,the dielectric properties will decrease.On the other hand,air,O2,NH_3 and CF_4(ranked in terms of(E/N)_(cr) value in increasing order) have the potential to improve the dielectric property of CO_2 at room temperature.  相似文献   

15.
The tarnishing test in the presence of hydrogen sulfide(H2S) vapors has been used to investigate the tarnish resistance capability of copper-based alloys coated with Si02-like films by means of plasma-enhanced chemical vapor deposition(PECVD) fed with a tetraethoxysilane/oxygen mixture.The chemical and morphological properties of the films have been characterized by using infrared absorption spectroscopy(IR) and scanning electron microscopy(SEM)with energy disperse spectroscopy(EDS).The corrosion products of the samples after the tarnishing test have been identified by X-ray diffraction analysis(XRD).It has been found that SiO2-like films formed via PECVD with a high O2 flow rate could protect copper-based alloys from H2S vapor tarnishing.The alloys coated at the O2 flow rate of 20 sccm remain uncorroded after 54days of H2S vapor tarnish testing.The corrosion products for the alloys deposited at a low O2flow rate after 54 days of tarnish testing are mainly composed of brochantite.  相似文献   

16.
To improve the'detonation-supporting'performance of fuel-rich catalytic combustion products,DBD plasma,stimulated by adjustable nanosecond pulse power supply,was used to further regulate the components and concentrations of the hydrocarbon blends.In this paper,the parameters including load voltage,frequency,rising(falling)edge,pulse width and feeding flow rate were changed respectively,and the corresponding concentration and proportion change of the components in blend gas were investigated.According to the experiment result,it was found that when the discharge frequency is low,the plasma mainly promotes the transformation of light gaseous substances,while it mainly promotes the conversion to heavy hydrocarbons when the frequency is larger.Increasing load voltage will strengthen this trend.The controlling and reforming effect of plasma on the blend gas will decrease with the increase of voltage rising(falling)edge and the feeding flow rate.The regulation effect will be strengthened with the increase of pulse width under 200 ns.With the increase of discharge intensity,the'carbon'settles on the walls of the reactor,which will change the dielectric constant,leading to the loss of control of the discharge.  相似文献   

17.
Gridded Inertial Electrostatic confinement (IEC) devices are of interest due to their flexibility in burning advanced fuels, their tuning ability of the applied voltage to the reaction cross-section. Although this device is not suitable for power production in its present form, it does have several near term applications. The number of applications of this device increases with increasing fusion reactivity. These devices are simple to operate but are inherently complicated to understand and an effort to incrementally understand the device to improve its operational efficiency is underway at University of Wisconsin, Madison. Of all the parameters under study we are focusing on the effects of flow rate and flow ratio on the fusion reactivity in the present paper. Experiments were conducted to understand the influence of fuel flow ratio on the fusion reactions. The residual gas analyzer (RGA) was used to study the impurity concentration as the flow ratio was changed. It was observed that the higher flow rate resulted in reduced impurity levels and hence an increase in fusion rate. Several different species of gases were detected, some of these molecules formed inside the RGA analyzer. The flow ratio scan revealed that the optimum mixture of D2 with 3He to be D2:3He::1:2 for maximum D–3He fusion rate.  相似文献   

18.
采用Rh/γ-Al2O3催化剂,在固定床微型反应器上实验考察进料组成、反应温度和反应物总流量对甲烷氢氘交换的催化性能的影响。结果表明:在进料组成不变的条件下,当温度低于642K时,甲烷的转化率随温度的升高而快速增加,当温度高于642K时,甲烷的转化率不随温度的升高而变化;在反应温度为524~792K、进料组成不变的条件下,当温度低于642K时,甲烷的转化率随反应物流量的增加而明显减小,当温度高于642K时,甲烷的转化率基本不随温度的升高而变化;在反应温度为524~792K、反应物总流量不变的条件下,当HD/CH4流量比在1.1~2.5间变化时,甲烷的转化率随HD/CH4流量比的增加而减小。  相似文献   

19.
文章简要描述了空心阴极等离子体化学气相沉积(HPCVD)的原理,以及用HPCVD方法制备CHN薄膜的工艺和实验结果。用XPS和AFM分别分析了CHN薄膜中C和N的成分及表面形貌,并得到了一定条件下的薄膜沉积速率。  相似文献   

20.
A 2D axial symmetry fluid model is applied to study the features of an atmospheric-pressure argon (Ar) plasma jet propagating into ambient nitrogen (N2) driven by a pulsed voltage, emphasizing the influence of gas velocity on the dynamic characteristics of the jet. The results show that the Ar jet exhibits a cylindrical-shaped channel and the jet channel gradually shrinks with the increase in propagation length. The jet propagation velocity varies with time. Inside the dielectric tube, the plasma jet accelerates propagation and reaches its maximum value near the nozzle. Exiting the tube, its velocity quickly decreases and when approaching the metal plane, the decrease in jet velocity slows down. The increase in gas speed results in the variation of jet spatial distribution. The electron density presents a solid structure at lower gas flow speeds, whereas an annular structure can be observed under the higher gas flow velocity in the ionization head. The jet length increases with the flow velocity. However, when the flow velocity exceeds a critical value, the increase in the rate of the plasma jet length slows down. In addition, the gas velocity effect on the generation and transport of the reactive particles is also studied and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号