首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Optimal Fixture Design Accounting for the Effect of Workpiece Dynamics   总被引:3,自引:6,他引:3  
This paper presents a fixture layout and clamping force optimal synthesis approach that accounts for workpiece dynamics during machining. The dynamic model is based on the Newton– Euler equations of motion, with each fixture–workpiece contact modelled as an elastic half-space subjected to distributed nor-mal and tangential loads. The fixture design objective in this paper is to minimise the maximum positional error at the machining point during machining. An iterative fixture layout and clamping force optimisation algorithm that yields the "best" improvement in the objective function value is presented. Simulation results show that the proposed optimis-ation approach produces significant improvement in the work-piece location accuracy. Additionally, the method is found to be insensitive to the initial fixture layout and clamping forces.  相似文献   

2.
在夹具设计过程中,工件-夹具之间的接触力是工件稳定性分析和加工精度估算的关键因素.为此,根据多重夹紧力对工件的作用过程,建立了接触力与多重夹紧力的大小、作用点以及夹紧顺序之间的接触力模型.基于总余能原理,提出了接触力模型的求解算法.最后通过典型实例,详细说明了接触力的分析预测过程.  相似文献   

3.
In any machining fixture, the workpiece elastic deformation caused during machining influences the dimensional and form errors of the workpiece. Placing each locator and clamp in an optimal place can minimize the elastic deformation of the workpiece, which in turn minimizes the dimensional and form errors of the workpiece. Design of fixture configuration (layout) is a procedure to establish the workpiece–fixture contact through optimal positioning of clamping and locating elements. In this paper, an ant colony algorithm (ACA) based discrete and continuous optimization methods are applied for optimizing the machining fixture layout so that the workpiece elastic deformation is minimized. The finite element method (FEM) is used for determining the dynamic response of the workpiece caused due to machining and clamping forces. The dynamic response of the workpiece is simulated for all ACA runs. This paper proves that the ACA-based continuous fixture layout optimization method exhibits the better results than that of ACA-based discrete fixture layout optimization method.  相似文献   

4.
Machining fixtures are used to locate and constrain a workpiece during a machining operation. To ensure that the workpiece is manufactured according to specified dimensions and tolerances, it must be appropriately located and clamped. Minimising workpiece and fixture tooling deflections due to clamping and cutting forces in machining is critical to machining accuracy. An ideal fixture design maximises locating accuracy and workpiece stability, while minimising displacements.The purpose of this research is to develop a method for modelling workpiece boundary conditions and applied loads during a machining process, analyse modular fixture tool contact area deformation and optimise support locations, using finite element analysis (FEA). The workpiece boundary conditions are defined by locators and clamps. The locators are placed in a 3-2-1 fixture configuration, constraining all degrees of freedom of the workpiece and are modelled using linear spring-gap elements. The clamps are modelled as point loads. The workpiece is loaded to model cutting forces during drilling and milling machining operations. Fixture design integrity is verified. ANSYS parametric design language code is used to develop an algorithm to automatically optimise fixture support and clamp locations, and clamping forces, to minimise workpiece deformation, subsequently increasing machining accuracy. By implementing FEA in a computer-aided-fixture-design environment, unnecessary and uneconomical “trial and error” experimentation on the shop floor is eliminated.  相似文献   

5.
Contact forces between workpiece and fixture define fixture stability during clamping and influence workpiece accuracy during machining. In particular, forces acting in the contact region are important for understanding deformation of the workpiece at the contact region. This paper presents a model that combines contact elasticity with finite element methods to predict the contact load and pressure distribution at the contact region in a workpiece-fixture system. The objective is to determine how much clamp forces can be applied to generate adequate contact forces to keep the workpiece in position during machining. The model is able to predict the normal and tangential contact forces as well as the pressure distribution at each workpiece-fixture contact in the fixturing system. Model prediction is shown to be in good agreement with known industry practice on clamp force determination. The presented method has no limits on the types of materials that can be analyzed.  相似文献   

6.
In machining fixtures, minimizing workpiece deformation due to clamping and cutting forces is essential to maintain the machining accuracy. This can be achieved by selecting the optimal location of fixturing elements such as locators and clamps. Many researches in the past decades described more efficient algorithms for fixture layout optimization. In this paper, artificial neural networks (ANN)-based algorithm with design of experiments (DOE) is proposed to design an optimum fixture layout in order to reduce the maximum elastic deformation of the workpiece caused by the clamping and machining forces acting on the workpiece while machining. Finite element method (FEM) is used to find out the maximum deformation of the workpiece for various fixture layouts. ANN is used as an optimization tool to find the optimal location of the locators and clamps. To train the ANN, sufficient sets of input and output are fed to the ANN system. The input includes the position of the locators and clamps. The output includes the maximum deformation of the workpiece for the corresponding fixture layout under the machining condition. In the testing phase, the ANN results are compared with the FEM results. After the testing process, the trained ANN is used to predict the maximum deformation for the possible fixture layouts. DOE is introduced as another optimization tool to find the solution region for all design variables to minimum deformation of the work piece. The maximum deformations of all possible fixture layouts within the solution region are predicted by ANN. Finally, the layout which shows the minimum deformation is selected as optimal fixture layout.  相似文献   

7.
This paper presents a model for analysing the reaction forces and moments for machining fixtures with large contact areas, e.g. a mechanical vice. Such fixtures transmit torsional loads in addition to normal and tangential loads and thus differ from fixtures using point or line contacts. The model is developed using a contact mechanics approach where the workpiece is assumed to be elastic in the contact region and the fixture element is treated as rigid. Closed-form contact compliance solutions for normal, tangential, and torsional loads are used to derive the elastic deformation model for each contact. A minimum energy principle is used to solve the multiple contact problem yielding unique predictions of the fixture–workpiece contact forces and moments due to clamping and machining forces. This model is then used to determine the minimum clamping force necessary to keep the workpiece in static equilibrium during machining. An example is given to demonstrate its effectiveness in analysing the clamping performance of a mechanical vice during machining.  相似文献   

8.
夹具布局和夹紧力大小影响切削变形的大小和分布.基于遗传算法和有限元方法,提出一种夹具布局和夹紧力优化设计方法.该方法将同步优化夹具布局和夹紧力大小以及施加变夹紧力相结合,首先以加工变形最小化和变形分布最均匀为目标同步优化夹具布局和夹紧力大小,然后在优化后的夹具布局的基础上求解使得加工变形最小的变夹紧力大小.使用该方法进行底座薄壁零件的夹具优化设计,结果表明优化得到的设计优于经验设计和多目标优化方法,该方法有效地降低了加工过程中工件的变形,提高变形均匀度.  相似文献   

9.
薄壁弧形件装夹布局有限元优化   总被引:5,自引:0,他引:5  
关于航空结构件加工变形控制的研究是高效数控加工研究的一部分。薄壁弧形零件加工中的弹性变形对加工质量影响很大,而装夹布局影响切削变形的大小和分布。以减少加工中工件最大弹性变形为目标,建立了弧形件铣削加工装夹布局的优化模型,采用商业有限元软件的设计优化模块进行计算。在对计算结果进一步分析的基础上,提出了最终的装夹布局方案,采用该方案可以得到整个加工过程中更低的变形量,变形分布更均匀,为采取相应数控补偿措施提供条件。优化方案和实际加工方案结果基本一致。所提出方法可推广至其他类型工件夹具布局优化设计。  相似文献   

10.
Low weight and good toughness thin plate parts are widely used in modern industry, but its flexibility seriously impacts the machinability. Plenty of studies focus on the influence of machine tool and cutting tool on the machining errors. However, few researches focus on compensating machining errors through the fixture. In order to improve the machining accuracy of thin plate-shape part in face milling, this paper presents a novel method for compensating the surface errors by prebending the workpiece during the milling process. First, a machining error prediction model using finite element method is formulated, which simplifies the contacts between the workpiece and fixture with spring constraints. Milling forces calculated by the micro-unit cutting force model are loaded on the error prediction model to predict the machining error. The error prediction results are substituted into the given formulas to obtain the prebending clamping forces and clamping positions. Consequently, the workpiece is prebent in terms of the calculated clamping forces and positions during the face milling operation to reduce the machining error. Finally, simulation and experimental tests are carried out to validate the correctness and efficiency of the proposed error compensation method. The experimental measured flatness results show that the flatness improves by approximately 30 percent through this error compensation method. The proposed method not only predicts the machining errors in face milling thin plate-shape parts but also reduces the machining errors by taking full advantage of the workpiece prebending caused by fixture, meanwhile, it provides a novel idea and theoretical basis for reducing milling errors and improving the milling accuracy.  相似文献   

11.
This paper presents a fixture configuration verification methodology for nonlinear fixture systems, which is developed on the basis of optimal clamping forces and total restraint. This method can be applied for validating the feasibility of a fixture with point, line and area contacts in two stages: fixturing and machining. The "∞-∞-∞" principle for nonlinear fixture location is proposed. The automatic fixture verification system is modelled as a nonlinear optimisation problem with respect to minimum clamping forces. The method provides a simple and effective means for: (a) verifying whether a particular fixturing configuration is valid with respect to locating stability, deterministic workpiece location, clamping stability and total restraint and (b) determining minimum variable clamping forces over the entire machining time. Two case studies are presented to demonstrate the effectiveness and the capabilities of the methodology. ID="A1"Correspondance and offprint requests to: Prof. D. R. Strong, Department of Mechanical and Industrial Engineering, The University of Manitoba, Winnipeg, Manitoba, Canada R3T 5V6. E-mail: strong@ms.umanitoba.ca  相似文献   

12.
针对弱刚度工件在定位、夹紧过程中易变形的问题,建立了夹紧顺序与接触力及节点位移增量之间关系的数学模型,给出了各夹紧步骤中工件夹具系统的静力平衡方程;在此基础上,根据最小余能原理及库仑摩擦定律,构建了装夹方案优化模型,提出了基于遗传算法的夹具布局与夹紧顺序同步优化方法。算例结果表明,该方法有效降低了由于装夹所引起的工件变形。提高了加工精度。  相似文献   

13.
阐述在轮毂的数控车削加工过程中,由于受到夹具的夹紧力和切削力的作用,致使工件在加工时产生变形,尺寸精度大大超差,严重时甚至工件会脱落于夹具,导致工件报废。经过本人认真研究,通过改进夹爪、调整工件夹紧位置,适当改变夹头夹紧力及优化加工工艺等,从而大大提高了加工精度和生产效率,降低了劳动强度,节约生产成本。希望以上的方法能对从事相关工作的人员有一定的借鉴作用。  相似文献   

14.
In fixture design, a workpiece is required to remain stable throughout the fixturing and machining processes in order to achieve safety and machining accuracy. This requirement is verified by a function of the computer-aided fixture design verification (CAFDV) system. This paper presents the methodologies of fixturing stability analysis in CAFDV. A kinetic fixture model is created to formulate the stability problem, and a fixture stiffness matrix (FSM) is derived to solve the problem. This approach not only verifies fixturing stability, but also finds the minimum clamping forces, fixture deformation, and fixture reaction forces. The clamping sequence can also be verified with this approach.  相似文献   

15.
针对主减速器壳体在立式多刀半自动车床上加工时,采用标准液压三爪卡盘无法有效定位夹紧工件的问题,依据工件的结构特点,设计制造一种能在一次装夹下完成粗精两序加工的专用车削工装夹具,彻底解决了由于多刀同时粗加工、车削抗力大,工件夹持不可靠的安全问题。通过夹紧力的高低压转换,有效防止工件夹紧变形。生产实践证明,该夹具简单可靠,便于操作,提高了生产效率,保证了加工精度。  相似文献   

16.
铣削加工中最小夹紧力的计算   总被引:1,自引:0,他引:1  
金秋  刘少岗 《工具技术》2010,44(4):36-39
提出了一种计算铣削加工中夹紧工件所需最小夹紧力的简洁方法。首先,确定了工件与夹具元件之间的接触刚度;其次,建立了接触变形量与工件位移量的关系;然后,给出了工件的静态平衡方程。通过合并以上方程,建立了线性方程组计算工件与夹具元件之间的切向接触力,并根据最大切向接触力进一步计算出夹具元件与工件之间不发生相对滑动所需理论最小夹紧力。最后,通过算例验证了该方法的正确性。  相似文献   

17.
介绍薄板焊装夹具在国内外研究进展,然后在"N-2-1"定位原理的基础上,建立了适合车身焊接工艺的工件定位点优化设计的数学模型,提出了一种可以快速确定工件定位点位置以及夹具布局方案的设计方法。利用ANSYS有限元软件对模型进行了实验分析和验证,得出板料有限元网格的大小、夹具的定位点、夹紧点及夹紧力的大小等对接触变形的影响。结果表明该模型和方法快速、准确、合理,达到了预期设计的目标。  相似文献   

18.
车削薄壁套类零件夹具设计   总被引:1,自引:0,他引:1  
机床夹具设计是工艺装备设计中的一个重要组成部分,在整个机械加工过程中,夹具除了夹紧、固定被加工零件外,还要求保证加工零件的位置精度、提高加工生产率。本文主要阐述了车削薄壁套类零件夹具设计方案,改变传统设计方法,提高该类零件的生产效率。  相似文献   

19.
机械加工中合理选择夹具定位方案对保证工件的加工精度非常重要。为保证工件的精度要求,往往对夹具中定位误差进行计算。通过对常用套筒形工件钻通孔定位方案分析与计算,提出新的工件定位方法,以消除误差,达到更高的精度要求。  相似文献   

20.
基于遗传算法的夹具布局和夹紧力同步优化   总被引:7,自引:0,他引:7  
夹具设计是机械加工中一个重要步骤。夹具优化旨在得到最合理的夹具布局和夹紧力。为了弥补分步优化夹具布局和夹紧力以及应用传统优化算法而存在的不足,本文提出了应用遗传算法同步优化夹具布局和夹紧力的方法。使用该方法进行夹具优化的算例结果表明优化得到的设计优于经验设计,该方法是一种有效的夹具优化方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号