首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
MnO2作为超级电容器电极材料具有理论比电容高、成本低、环境友好等优点,但其低导电性和低利用率阻碍了其潜在应用.本研究首先在柔性碳布上电化学生长ZnO纳米棒阵列作为电极衬底,然后通过阳极电沉积法在ZnO纳米棒阵列表面外延生长了Mo和碳纳米管(CNTs)共掺杂的MnO2薄膜,可控构筑了有效、高导电性的MnO2纳米阵列电极(定义为ZnO@Mo-CNT-MnO2 NA).柔性ZnO@Mo-CNTMnO2 NA电极在100 A g-1的大电流充放电密度下比电容可达237.5 F g-1,10,000次循环后电容保留率高达86%.采用ZnO@Mo-CNTMnO2 NA电极组装成水系非对称超级电容器,弯曲状态下在132.35 mW cm-3(5mA cm-2)高功率密度下获得了1.13 mW h cm-3的高能量密度,5mA cm-2充放...  相似文献   

2.
本文介绍了一种由水热生长的MnCo2O4 (MCO)纳米线以及随后电沉积的NiCoMnS4(NCMS)纳米片组成的高性能超级电容器电极材料,即泡沫镍上生长的MCO@NCMS.由于其多孔和互联的纳米结构以及MCO和NCMS的协同效应,在1 mA cm-2处实现了12,020.8 mF cm-2的高电容,并展现出良好的倍率性能以及循环稳定性.电化学测试表明,组装成的水性非对称超级电容器在0.800 mW cm-2的功率密度下,达到0.611 mW h cm-2的高能量密度并具有良好的循环稳定性,即在15,000次充放电循环后,容量保持率可达90%,且保持100%的库仑效率.  相似文献   

3.
为满足可穿戴电子设备日益提升的要求,低成本、高性能柔性超级电容器成为研究的热点。在玉米苞叶纤维(CHF)基材表面原位生长聚苯胺(PANI),继而以聚乙烯醇/硫酸(PVA/H2SO4)作为凝胶,通过简单的冻融法制备聚苯胺-玉米苞叶纤维柔性自支撑电极(PANI-CHF-GEL)。PANI-CHF-GEL显示出优异的力学性能(断裂强度为259 kPa,断裂伸长率为121%)和较好的韧性(断裂能为0.167 MJ·cm-3)。采用PVA/H2SO4凝胶作为电解质组装得到的PANI-CHF-GEL//PANI-CHF-GEL对称固态超级电容器具有优越的电化学储能性能:在3.00 mA·cm-2的电流密度下,面积比电容高达1 789.74 mF·cm-2,功率密度为0.34 mW·cm-2,能量密度为3.51 mW·h·cm-2。此外,该器件还显示出良好的柔性,弯曲90°时仍能保持其初始性能,表明了其在...  相似文献   

4.
微型超级电容器(MSCs)具有高的功率密度和卓越的循环性能,广泛的潜在应用,因而受到诸多关注。然而,制备具有高表面电容和能量密度的MSCs电极仍然存在挑战。本研究使用还原石墨烯气凝胶(GA)和二硫化钼(MoS2)作为材料,结合3D打印和表面修饰方法成功构建了具有超高表面电容和能量密度的MSCs电极。通过3D打印技术,获得具有稳定宏观结构和GA交联微孔结构的电极。此外,采用溶液法在3D打印电极表面加载MoS2纳米片,进一步提高了材料的电化学性能。具体而言,电极的表面电容达3.99 F cm-2,功率密度为194μW cm-2,能量密度为1 997 mWh cm-2,表现出卓越的电化学性能和循环稳定性。这项研究为制备具有高表面电容和高能量密度的微型超级电容器电极提供了一种简单高效的方法,在MSCs电极领域具有重要的参考意义。  相似文献   

5.
采用水热法将石墨烯生长到泡沫镍上,获得泡沫镍@石墨烯水凝胶基底材料(NF@GH),再以十六烷基三甲基溴化铵(CTAB)为导向剂,在120℃下水热反应后得到NF@GH@NiCoLDH。并研究了石墨烯水凝胶对NF@GH@NiCoLDH复合材料电化学性能的影响。1 mA cm-2电流密度下NF@GH@NiCoLDH的比容量可达3658 mF cm-2,15 mA cm-2时的比容量保持率为67.5%,高于NF@NiCoLDH(58%);10000次循环后的容量保持率为62%(15 mA cm-2),具有较好的循环稳定性和倍率性能。以NF@GH@NiCoLDH为正极材料组装的不对称超级电容器比容量为909 mF cm-2(1 mA cm-2),器件的最高能量密度为0.25 mWh cm-2(功率密度为0.7 mW cm-2)。  相似文献   

6.
柔性超级电容器具有超高的功率密度和超长的循环寿命,结合其结构的灵活性、轻质和形状多样性的特点,在储能领域具有巨大的应用潜力。发展柔性超级电容器首先要解决柔性电极制备的难题。本研究通过激光直写技术结合KOH活化得到高柔性、高导电性的微孔石墨烯基底,即活化的激光诱导石墨烯(a-LIG),然后用电化学沉积法在其上沉积二氧化锰,成功开发出柔性a-LIG/MnO2电极。在1 mol/L的Na2SO4电解质中,当电流密度为1 mA/cm2时,复合aLIG/MnO2电极表现出304.61 mF/cm2的高面积比电容。以a-LIG/MnO2为阳极,a-LIG为阴极,PVA/H3PO4为凝胶电解质,组装了柔性非对称超级电容器,在功率密度为260.28μW/cm2时其面积能量密度为2.61μWh/cm2,在电流密度为0.2 mA/cm2时其面积比...  相似文献   

7.
孙义民  易荣华  段纪青  周爱军 《材料导报》2021,35(16):16001-16007
以碳化三聚氰胺泡沫为柔性基底,负载高度有序的镍钴双金属氧/硫/硒化物纳米棒阵列和氧化铋纳米片阵列,分别作为正负极构筑了一系列不对称柔性超级电容器.研究表明,镍钴硒化物电容性能明显优于氧化物和硫化物,所制备的不对称电容器在1 mA/cm2 电流密度下面积电容可以达到620. 9 mF/cm2 ,功率密度和能量密度分别为3. 75 mW/cm3 和0. 97 mWh/cm3 ,循环6 000次电容保持率为91. 2% ,重复弯折200次后,仍保留88. 6%的初始比电容.因此,基于镍钴硒化物和氧化铋的不对称超级电容器在高性能柔性储能器件领域具有潜在的应用价值.  相似文献   

8.
具有电化学变色功能的柔性电池在智能电子领域显示出巨大的应用潜力.然而,具有可视化电量预警功能的镍锌电池目前尚未见报道.在此,我们设计了一种用于柔性镍锌电池的电致变色镍钴氢氧化物/镍/氧化铟锡(NiCo BH/Ni/ITO)柔性电极.通过优化Ni层厚度,电极在电流密度为0.1 mA cm-2时,着色效率为5 9.8 9 cm2C-1,容量为7.1 5μA h cm-2.相应组装的电致变色镍锌电池功率密度为160μW cm-2时,能量密度为12.69μW h cm-2,优于部分文献报道的透明柔性超级电容器和电致变色电池.值得注意的是,组装的镍锌电池在充放电过程中显示出可逆的颜色变化,提供了一种可视化监测电池剩余电量的新功能.  相似文献   

9.
采用两步界面组装法制备石墨烯/MnO2纳米片(GMTF)三维复合薄膜电极,研究了复合薄膜的电化学性能。结果表明,MnO2的赝电容和石墨烯的双电层电容相互协调,使得GMTF复合薄膜材料比单一的MnO2纳米片或者石墨烯材料具有更佳的电化学性能。在三电极体系中,GMTF电极的比电容在5mV/s时达156.54mF/cm2,远高于石墨烯(40.24mF/cm2)和MnO2纳米片(69.03mF/cm2)。此外,在两电极体系中,基于GMTF复合薄膜的固态超级电容器也显示出较高的面积比电容(120.49mF/cm2)和质量比电容(204.22F/g)、优良的循环性能。在功率密度为39mW/cm3时,能量密度能够达到1.735mWh/cm3。  相似文献   

10.
可穿戴设备的快速发展刺激了对柔性高面容量储能设备的迫切需求。本工作采用一种简单的无粘结剂阴极电沉积方法将纳米片状RuOx·nH2O沉积固定在三维石墨烯骨架上, 以提高RuOx·nH2O的利用效率, 实现了更优良的电极导电性, 并缩短了质子和电子的扩散传输路径。在2 mV?s -1时, 它的面容量高达3.78 F?cm -2, 主要归因于材料的纳米层状结构有利于电解质进入活性物质RuOx·nH2O的内部。另外, 以这种电极材料制备得到的全固态柔性超级电容器, 在10 mA?cm -2的电流密度下, 能量密度达到0.1 mWh?cm -2, 功率密度达到2.4 mW?cm -2, 超过大部分文献报道。  相似文献   

11.
阴极材料的开发对于可充电水相电池的发展具有重要意义.本文通过自牺牲模板法和碳包覆法相结合制备了碳包覆介孔Fe3O4纳米阵列阴极材料(Fe3O4@C MNAs).得益于包覆碳层、介孔结构和纳米阵列结构的优异特性, Fe3O4@C MNAs电极表现出良好的倍率性能和优秀的循环稳定性.在组装的Ni/Fe电池器件中, Fe3O4@C MNAs表现出较高的能量密度及功率密度(在能量密度为213.3 W h kg-1时功率密度为0.658 kW kg-1和在功率密度为20.7 kW kg-1时能量密度为113.9 W h kg-1)和出色的循环稳定性(约5000次循环后保持81.7%).  相似文献   

12.
Layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials were synthesized by different synthesis routes using carbonate and hydroxide co-precipitation methods. Physical properties of the prepared Li[Ni1/3Co1/3Mn1/3]O2 varied depending on the synthesis method employed. These materials were applied as a positive electrode to an asymmetric electrochemical capacitor with activated carbon as the negative electrode and the electrochemical properties of the capacitor were studied. Li[Ni1/3Co1/3Mn1/3]O2 prepared by the carbonate co-precipitation exhibited higher capacitance and better rate capability with stable cycling retention over 500 cycles than Li[Ni1/3Co1/3Mn1/3]O2 prepared by the hydroxide co-precipitation. The asymmetric electrochemical capacitor (AEC) cell (AC/Li[Ni1/3Co1/3Mn1/3]O2) had a voltage slope from 0.2 to 2.2 V and delivered a capacity of 60 F g−1 with a capacity retention of 88.4% during 500 cycles based on the overall active materials weight. The leakage current was largely decreased for the asymmetric electrochemical capacitor and the maintained voltage was 84.4% during 3 days.  相似文献   

13.
To construct supercapacitors (SCs) with high-efficient electrochemical properties, the morphology and structure of applied electrode materials are the key factors. Herein, three-dimensional (3D) sea urchin-like MnCo2O4 nanoarchitectures grown on Ni foam (NF) were successfully synthesized via a simple solvothermal method and subsequent annealing treatment. Electrochemical tests revealed that the area specific capacitances of the MnCo2O4 electrode and the corresponding assembled asymmetric device can achieve 1634 and 522 mF·cm−2, respectively. When the power density of the assembled asymmetric supercapacitor (ASC) is 2.25 mW·cm−2, the maximum energy density can reach 0.163 mW·h·cm−2. After 5500 cycles of long-term stability test, the capacity retention rate maintains 91.7%. The excellent electrochemical performance can be mainly ascribed to the unique nanostructure of the material, which provides a great quantity of electroactive sites for Faraday redox reactions as well as accelerates the process of the ions/electrons transport. This work provides a certain reference value for the preparation of MnCo2O4 electrode with novel structure and excellent electrochemical performance for SCs.  相似文献   

14.
制备ITO/PEDOT:PSS/PCPDTBT:PC61BM聚合物薄膜,研究了成膜添加剂DMI对ITO/PEDOT:PSS/PCPDTBT:PCBM/A1的聚合物薄膜性能的影响。结果表明,成膜添加剂DMI使PCPDTBT:PCBM光敏层的吸收峰红移,所制备出的太阳能电池的性能得到大幅度提高。DMI使薄膜中产生纳米尺度的两相分离,增大了给体与受体间的界面接触,提高了光生激子的分离效率,增大了电子的迁移率和电极收集载流子的效率,从而提高了器件的性能。在强度为100 mW·cm-2的光照下,太阳能电池的填充因子FF为0.38,能量转换效率η为2.64%,开路电压Voc为0.66 V,短路电流密度Jsc为10.42 mA·cm-2。  相似文献   

15.
采用水热法制得一种尖晶石型MgCo_(2)O_(4)海胆状电极材料,并通过X射线衍射(XRD)、X射线光电子能谱分析(XPS)、扫描电镜(SEM)、透射电镜(TEM)以及电化学工作站对产物进行了表征和电化学性能测试。通过改变所制备材料的水热反应时间,制备出团簇结构、分布较均匀以及密集度较高的MgCo_(2)O_(4)海胆状形貌。结果表明,当水热反应时间为6 h时所获得的MgCo_(2)O_(4)电极材料结构较为完善、尺寸较为均匀、电化学性能较为优异,而且在电流密度为1 mA/cm^(2)情况下,面积比电容高达6.75 F/cm^(2)。另外,对该MgCo_(2)O_(4)海胆状材料在20 mA/cm^(2)的电流密度下循环1000周次后,面积比电容保持为原来的88.4%,表现出良好的循环性能。  相似文献   

16.
固体氧化物电池可实现CO/CO2的可逆转化,在电能和化学能相互转化过程中显示出巨大潜力.然而,其商业化进展一直受到燃料极抗积碳性能差的限制.本工作中,我们发展了一种CoFe合金纳米颗粒和Ruddlesden-Popper层状结构Sr3Fe1.25Mo0.75O7-δ复合新型燃料电极(CoFe-SFM),其可以通过钙钛矿Sr2Fe7/6Mo0.5Co1/3O6-δ在还原气氛中退火发生相变得到.电化学阻抗谱和弛豫时间分步法分析可知CoFe-SFM电极通过改善体相氧化学扩散能力和表面氧交换过程来增强CO氧化和CO2还原动力学.在固体氧化物燃料电池模式下,800℃的最大功率达到259 mW cm-2;在固体氧化物电解电池模式下,1.3 V工作电压下单电池的电解电流密度为-0.453 A cm-2,都远超对比电极材料.在20次SOFC-SOEC循环操作条件下,CoFe-SFM燃料极依然保持稳定的微结构和抗积碳性能,电池性能保持良好.该工作可为CO2转化、抗积碳电极材料设计和提升电极表界面反应动力学提供一定的指导作用.  相似文献   

17.
以Co基氢氧化物为基础用异质元素掺杂方式引入Mn并与Co协同,制备出Mn掺杂Co-Al层状双金属氢氧化物(Mn-CoAl LDH).在1 mol/L的KOH碱性电解质中,电流密度达到10 mA·cm-2时Mn-CoAl LDH的全解水电势为1.66V,其性能远优于Co-A1层状双金属氢氧化物(CoAl LDH)、Ni2...  相似文献   

18.
随着电子产品、电动汽车以及智能电网的快速发展,不仅需要锂离子电池(LIBs)具有优异的储锂性能,而且要求电极材料成本低廉、资源丰富和绿色环保。基于碳负极材料的优点,将废弃的一次性竹筷,在碱性溶液中经过可控的热处理,利用竹子中丰富的天然纤维素,从而获得尺寸均匀的碳纤维(CFs)材料。相比于石墨电极,竹基CFs作为LIBs的负极材料时表现出优异的电化学性能。为进一步提高其储锂性能,以CFs为骨架,通过水热法在其表面制备了一层二硫化钼(MoS2)纳米花,形成核壳结构的CFs/MoS2复合电极材料。电化学测试结果表明,CFs电极在200 mA/g的电流密度下循环500次,放电比容量仍有381.1 mA·h/g;CFs/MoS2复合材料在1000 mA/g的大电流密度下经过1000次循环,仍保持有843 mA·h/g的放电比容量。   相似文献   

19.
Despite the high specific capacities, the practical application of transition metal oxides as the lithium ion battery (LIB) anode is hindered by their low cycling stability, severe polarization, low initial coulombic efficiency, etc. Here, we report the synthesis of the NiO/Ni2N nanocomposite thin film by reactive magnetron sputtering with a Ni metal target in an atmosphere of 1 vol.% O2 and 99 vol.% N2. The existence of homogeneously dispersed nano Ni2N phase not only improves charge transfer kinetics, but also contributes to the one-off formation of a stable solid electrolyte interphase (SEI). In comparison with the NiO electrode, the NiO/Ni2N electrode exhibits significantly enhanced cycling stability with retention rate of 98.8% (85.6% for the NiO electrode) after 50 cycles, initial coulombic efficiency of 76.6% (65.0% for the NiO electrode) and rate capability with 515.3 mA·h·g−1 (340.1 mA·h·g−1 for the NiO electrode) at 1.6 A·g−1.  相似文献   

20.
通过水蒸气二氧化碳(H2 O(gas)-CO2)共活化的物理活化方法制备聚苯胺基活性碳被广泛应用于商业活性碳的规模化生产,相比于化学活化方法,该方法制备的活化产物无活化剂残留、 清洗简单且工艺过程环保.以聚苯胺为原料,探究了H2 O(gas)的量和CO2分压对活化产物的影响.采用氮气吸/脱附、 扫描电镜(SEM)、 透...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号