首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to improve the selective absorption behavior of desulfurizer, a new sterically hindered amine desulfurizer, JPE-7, was developed. The performance of the desulfurizer was evaluated in laboratory. The effects of raw gas flow rate, absorption temperature and time, meanwhile JPE-7 and MDEA compound concentration on selective absorption capacity for H2S were investigated. Results showed that the desulfurizer JPE-7 had more excellent selectivity and absorption capacities than MDEA. The commercial availability of JPE-7 was discussed.  相似文献   

2.
Abstract

Corrosion in desulfurizer–H2S–CO2–H2O system was investigated by static weight loss test. The corrosion data for JPE-7 system were compared with those for MDEA and MEA system under the same conditions. The results indicated that the new desulfurizer JPE-7 system was generally less corrosion to carbon steel than MDEA and MEA system. The order of corrosivity of the desulfurizer system is JPE-7<MDEA<MEA. With the acid gas loading, especially the CO2 loading increase, the corrosion rate increases. The chloride anion in desulfurizer solution contributes greatly to corrosion. The higher the solution temperature, the more the corrosivity of desulfurizers.  相似文献   

3.
Desulfurizer JPE-7, a sterically hindered amine, has higher selectivity and absorption capacities than MDEA. JPE-7 has fast and complete regenerability, which has constant and lower H2S content in the reduplicate tail gas. Thermal stability of JPE-7 is favorable for industrial operation condition. With the concentration of JPE-7 increasing, the absorption of CO2 rapidly increases, while that of H2S is reluctant to increase thus the selectivity and absorptivity is reluctant to increase. The optimum concentration of JPE-7 is range from 30 wt% to 40 wt%. The dimethyl yellow-methenyl blue method is recommended to determine the concentration of JPE-7 with reasonable accuracy.  相似文献   

4.
Desulfurizer JPE-7, a sterically hindered amine, has higher selectivity and absorption capacities than MDEA. JPE-7 has fast and complete regenerability, which has constant and lower H2S content in the reduplicate tail gas. Thermal stability of JPE-7 is favorable for industrial operation condition. With the concentration of JPE-7 increasing, the absorption of CO2 rapidly increases, while that of H2S is reluctant to increase thus the selectivity and absorptivity is reluctant to increase. The optimum concentration of JPE-7 is range from 30 wt% to 40 wt%. The dimethyl yellow-methenyl blue method is recommended to determine the concentration of JPE-7 with reasonable accuracy.  相似文献   

5.
由于天然气中的重组分会对脱硫装置的运行效果及产品气气质造成影响,这一实际生产问题需要得到有效的解决。在MDEA溶液吸收性能评价装置上测定了不同条件下的MDEA溶液吸收性能,系统地研究了不同重组分对MDEA溶液吸收性能的作用规律,采用多因素方差分析筛选了关键因素,以判定其影响程度的大小,并采用人工神经网络建立了天然气中重组分不利影响的预测模型。结果表明:天然气中的重组分i-C_5、C_6、C_7、C_8和C_(10)对MDEA溶液吸收能力具有十分显著的影响,它们均属于BP神经网络预测模型的有效输入信号,模型预测值与真实值较为近似,BP人工神经网络表现出良好的准确性和稳定性。因此,利用BP人工神经网络能够准确、可靠地预测天然气中重组分对MDEA溶液吸收性能的不利影响。  相似文献   

6.
Kinetics of CO2 absorption into UDS (a multicomponent solvent) and MDEA solutions are measured in a disk column. Compared with MDEA, UDS shows greater absorption rate under the same operating conditions. The calculated activation energy E a for CO2 absorption into UDS is 44.92 kJ·mol?1, which is higher than that of MDEA. The atmospheric absorption experiment results indicate that UDS solution shows great superiority in removing sour compounds such as H2S and CO2 from oilfield associated gas as compared with MDEA.  相似文献   

7.
国内高含CO_2天然气处理装置主要采用活化MDEA脱碳工艺。以DEA、MEA、PZ为活化剂,总胺物质的量浓度控制在4 mol/L。利用HYSYS软件建立运算模型,研究这3种活化MDEA溶液对CO_2的吸收性能和解吸性能,通过分析认为,高含CO_2天然气深度脱碳处理宜采用PZ为活化剂。对PZ的活化机理进行研究,发现PZ作为活化剂的效果远胜于DEA和MEA。最后,分析不同吸收温度及CO_2分压下PZ浓度变化对活化性能的影响,发现加入少量PZ即可大幅提高PZ活化MDEA溶液与CO_2反应速率,在不同CO_2分压和吸收温度的条件下均能满足高含CO_2天然气的脱碳处理要求,适应性较强,建议活化MDEA溶液中PZ的质量分数为3%~5%。  相似文献   

8.
炼厂气胺法脱硫技术   总被引:6,自引:1,他引:5  
介绍了美国联碳公司的UCARSOL HS 101, Dow化学公司的MDEA以及国产 CT8-5等新型选择性脱硫溶剂的工业应用情况。在原料气 CO_2/H_2S值大于3的情况下,采用UCARSOL HS 101溶剂可节能10%。改进胺法脱硫工艺流程,采用溶剂集中再生及串级SCOT工艺,不仅可节省投资和占地面积,同时串级SCOT可节省蒸汽约15%。降低胺耗的途径有:控制胺液的使用浓度不高于50%;当浓度为50%时可采用循环水洗回收胺,并加强溶剂过滤。高效填料(扁环和蜂窝填料)用于液化石油气脱硫塔的扩能改造,均可提高处理能力25%以上。  相似文献   

9.
本文通过室内试验研究确定出适合MDEA溶液中铁离子的测定方法,并通过测定现场运行溶液的铁离子含量,分析铁离子与溶液发泡之闻的关系,为现场生产提供了一定的科学依据。  相似文献   

10.
本文通过室内试验研究确定出适合MDEA溶液中铁离子的测定方法,并通过测定现场运行溶液的铁离子含量,分析铰离子与溶液发泡之闻的关系,为现场生产提供了一定的科学依据。  相似文献   

11.
Mixed amine solvents have gained increasing attention in recent years. The absorption and desorption performance of mixed amine solvents for CO2 were analyzed by experiments. The absorption rate, absorption load, and desorption rate were used as the evaluating index. The experiment results show that the smaller proportion of MDEA/DETA solvents is the higher absorption load and absorption rate are, but the final desorption degree does not rise. When the rate of TETA is high, it is helpful to improve absorption rate and reduce desorption time of MDEA + TETA, but it is not necessary to add excessive TETA into mixed amine solvents.  相似文献   

12.
现阶段以MDEA为主体的配方型胺液在选择性脱硫工厂中应用较广泛,但MDEA存在易发泡的缺点,影响着整个脱酸系统的安全稳定运行。本文选取选择性脱硫吸收性能较好的MDEA、DGA、AMP以及环丁砜四种胺液,通过考察其单一及复配胺液的发泡高度及消泡时间,结合测定的表面张力参数,分析选择性脱硫胺液配方发泡特性及发泡机理,并建立发泡特性预测模型。通过分析得知,四种单一胺液发泡由易到难排序为:DGA>AMP>MDEA>环丁砜;MDEA+AMP复配配方发泡高度和消泡时间均处于较高水平,应避免选用MDEA质量分数为23%~27%、AMP质量分数为8%~16%的范围;对于MDEA+DGA复配配方,应避免选用MDEA质量分数为28%~36%、DGA质量分数高于8%的范围;MDEA+环丁砜复配配方发泡特性处于较低水平,MDEA的质量分数应避免在20%~24%的范围,环丁砜质量分数应避免低于4%。  相似文献   

13.
甲醇对N—甲基二乙醇胺降解的影响及对策研究   总被引:5,自引:1,他引:4  
N-甲基二乙醇胺(MDEA)水溶液广泛用于造反性吸收脱硫工艺。国内外文献报道MDEA在工业上使用若干年以来除氧引起的降解处,几乎无其他降解物产生。而我国某厂用MDEA从酸性废气中回收H2S的装置却出现了胺液降解及设备腐蚀的现像。本文根据大量的分析和实验结果,对甲醇引起MDEA降解反应机理和原因进行详细地分析与讨论,并提出相应的抑制措施。  相似文献   

14.
南化集团研究院开发的NCMA脱碳溶剂在中国石化武汉分公司干气提浓装置的工业应用结果表明:与原设计的MDEA脱硫溶剂相比,采用NCMA脱碳溶剂,胺液吸收CO2的能力大幅提高,在处理量相当的情况下,干气提浓装置提浓干气吸收塔的胺液循环量由 33 t/h下降到 14 t/h;胺洗后提浓干气中CO2体积分数低于50μL/L,溶剂的H2S负荷以及脱除硫醇的能力均有所提高。  相似文献   

15.
关于N-甲基二乙醇胺法脱硫工艺的探讨   总被引:6,自引:0,他引:6  
甲基二乙醇胺(MDEA)法是一种选择性脱硫工艺,因其卓越的节能效果已在石油工业中广泛应用,并取得良好的经济效益,现已成为气体脱硫的主体工艺之一。介绍了选择性脱硫过程的工艺特点及所涉及的特殊计算问题,分析了MDEA的化学降解和炼油厂中溶剂损失高等热点问题,提出了一些见解,以资共同探讨。  相似文献   

16.
根据拟平衡常数的概念,用H2S(或CO2)-MDEA-H2O体系的试验数据回归得出单一体系的平衡常数,由此推导出H2S-CO2-MDEA-H2O体系的平衡溶解度数学模型,并根据计算结果对影响MDEA吸收的各种因素进行分析。该模型考虑了胺液浓度对拟平衡常数的影响,其应用范围较广,精度较好  相似文献   

17.
MDEA脱硫溶液吸收选择性提升研究   总被引:1,自引:1,他引:0  
通过分析MDEA脱硫溶液吸收选择性的影响因素,确定了气液比和塔板数为工艺调整的主要手段。通过增大装置气液比,降低胺液循环量和吸收塔塔板数,可提高胺液对H2S的选择性吸收性能,增加产品气收率,减少装置的电力、蒸汽及胺液消耗。  相似文献   

18.
Absorption by alkanolamine solvents is widely used for acid gas removal in natural gas sweetening plant. In the present research, one of the Iranian gas treating unit, Ilam Gas Treating Company (IGTC), with 3.27 mole % H2S and 3.76 mole % CO2 in the inlet feed gas was simulated using HYSYS V8.8. Piperazine activated solution of MDEA (PZ-MDEA) at various process operating conditions was examined to yield energy demand of natural gas sweetening process using a new energy balance technique. In this technique, the total required energy demand was related to three sections: 1. heat of vaporization, 2. sensible heat and 3. heat of the absorption. Energy balance of the absorption and regeneration columns brings a perspective of energy distribution in the sweetening plant. The effects of CO2 and H2S concentration at inlet feed, PZ mass fraction in activated solution of MDEA and lean amine temperature on energy distribution of the natural gas sweetening process and reboiler duty were investigated. It was finally elucidated that energy demand in the gas sweetening process or duty of reboiler is greatly influenced by heat of vaporization rate. It was also found that the heat of absorption and sensible heat have minor impacts on the energy demand.  相似文献   

19.
采用电位滴定法测定了脱硫剂中N-甲基二乙醇胺(MDEA)质量分数,考察了该方法的精密度和准确度,并与手动滴定法进行了对比.结果表明:当样品中MDEA质量分数为20%~100%时,电位滴定法重复性实验的相对标准偏差为0.064%~0.110%,再现性实验结果的绝对偏差不大于0.409%,加标回收率不低于98.876%,其...  相似文献   

20.
刘益超  缪晖  刘承刚  马先  郑帆  王涛 《天然气与石油》2012,(4):75-76,86,103
提高"规模系数法"估算脱硫装置投资的精度,正确认识、把握、选取工艺参数是关键。影响天然气脱硫装置投资高低的主要工艺参数有四个,包括处理规模、原料气组分、原料气压力和原料气温度。以2个已建净化厂为例,分析了脱硫装置的投资构成,指出采用"规模系数法"估算脱硫装置投资应选取关键工艺参数,高压吸收系统主要根据单套处理规模和进厂原料气压力来估算投资,低压溶液再生系统主要根据脱硫剂(MDEA)溶液循环流量来估算投资。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号