首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We systematically studied the passivation process of 6082 aluminium alloy under the bending stress situation by combining electrochemical measurement techniques with three-point bending stress fixture designed by our lab, and then examined the microstructures of corroded specimens to analyze electrochemical corrosion mechanism in 1.5% NaCl solution. The results show that secondary Mg2Si phase acts as the anodic electrode, leading to the self-corrosion of Mg2Si phase. As a result, the spots of self-corroded Mg2Si phase within grains act as initial pitting corrosion site, combined with tiny, massive precipitated Mg2Si particles at the grain boundaries and bending stress, leading to the failure of surface of the 6082 aluminium alloy. The corrosion current density increases from 3.422 × 10−7 to 13.77 × 10−7 A/cm2 when bending stress level was increased from 0% up to 100% of yield stress. Passive film formation process occurred between polarization potential area of −1.05 and −0.65 V. Sectional microstructural investigations show that the corrosion starts penetrating vertically into the material before it develops corrosion paths extending parallel to the surface, leading to massive stress-induced corrosion cracks. The maximum corrosion depth increases from ∼24 μm on specimen without any stress applied to 85 μm when bending stress of 100% yield strength is applied.  相似文献   

2.
The corrosion behaviour of 6082 aluminium alloy was studied by measuring the electrochemical impedance spectra and electrode polarization curves. After the electrochemical tests, a microstructural analysis of the samples was conducted by using optical microscopy and electron scanning microscopy techniques to determine the corrosion mechanism. The results show that the Nyquist plot of the electrochemical impedance data in the NaCl solution consists of high- and low-frequency capacitive impedance loops. When ions are added to the NaCl etchant, the Nyquist plots of the electrochemical impedance data are composed of two different curves: a high-frequency capacitive impedance loop and a low-frequency inductive impedance loop. The corrosion current density increases with increasing concentration, and as a result, the corrosion resistance of the aluminium alloy decreases. The microstructures of 6082 aluminium alloy consist of Mg2Si secondary particles in a large α-Al matrix. Pitting corrosion initially occurs at the boundary between the matrix and secondary particles because the electrode potentials of the matrix and secondary particles are different. Then, corrosion paths develop along the network-like grain boundaries, and finally, massive network-like corrosion occurs throughout the entire alloy.  相似文献   

3.
研究了Zn元素对均匀化态Mg-3Sn-Ca合金耐腐蚀性能的影响。通过XRD、金相、SEM、失重、析氢、电化学极化曲线和阻抗谱分析了Mg-3Sn-Ca(TX31)和Mg-3Sn-Ca-Zn(TXZ311)2种合金的耐蚀性能。结果表明,Mg-3Sn-Ca合金中主要由CaMgSn及Mg2Sn相组成,加入Zn元素后晶粒得到显著细化,第二相体积分数增加并呈弥散分布,并有Mg2Ca相析出。而Zn的添加可显著提高Mg-3Sn-Ca合金的耐蚀性能,这主要归因于TXZ311合金具有更细小的晶粒尺寸以及均匀密集分布的CaMgSn相,使合金在腐蚀过程中形成的钝化膜更加均匀。因此,TXZ311合金的耐蚀性远高于TX31合金。  相似文献   

4.
5.
The relationship between microstructure and localized corrosion behavior in neutral aerated chloride solutions was investigated with SEM/EDAX, conventional electrochemical techniques, and with scanning Kelvin probe force microscopy (SKPFM) for two custom-made alloys with Si/Mg molar ratios of 0.12 and 0.49. In this order, Al3Fe, Al3Mg2, and Mg2Si intermetallics were identified in the first alloy and Al(FeMn)Si and Mg2Si particles in the second one. Anodic polarization curves and corrosion morphology showed that the alloy with higher Si/Mg molar ratio exhibited a better corrosion performance and evidence was shown that it had a more corrosion-resistant passive film. The corrosion process for both alloys in aerated 0.1 M NaCl solutions was localized around the Fe-rich intermetallics. They acted as local cathodes and produced dissolution of the aluminum matrix surrounding such particles. Mg2Si and Al3Mg2 exhibited anodic behavior. SKPFM was successfully used to map the Volta potential distribution of main intermetallics. The localized corrosion behavior was correlated with a large Volta potential difference between the Fe-rich intermetallics and the matrix. After immersion in the chloride solution, such Volta potential difference decreased.  相似文献   

6.
The influence of Si on the corrosion behaviour of Al–5Zn–0.03In–1Mg–0.05Ti (wt.%) alloy was investigated by the microstructure observation and electrochemical measurements in order to improve its corrosion non-uniform and electrochemical properties. The main precipitates in Al–5Zn–0.03In–1Mg–0.05Ti–0.1Si (wt.%) alloy is Mg2Si phase, which decrease the galvanic corrosion because the potential difference between Mg2Si and a-Al is smaller than that between MgZn2 and a-Al. The addition of Si improves the corrosion uniformity of the anode due to the fine equiaxed grains and grain boundaries where Mg2Si particles uniformly distributed. The results indicate that the microstructure, electrochemical characteristics and corrosion uniformity can be improved significantly after adding 0.1 wt.% Si into Al–5Zn–0.03In–1Mg–0.05Ti (wt.%) alloy.  相似文献   

7.
The corrosion performance of high pressure die-cast Al-6Si-3Ni (SN63) and Al-6Si-3Ni-2Cu (SNC632) alloys in 3.5% (mass fraction) NaCl solution was investigated. X-ray diffraction (XRD) and microstructural studies revealed the presence of single phase Si and binary Al3Ni/Al3Ni2 phases along the grain boundary. Besides, the single Cu phase was also identified at the grain boundaries of the SNC632 alloy. Electrochemical corrosion results revealed that, the SNC632 alloy exhibited nobler shift in corrosion potential (?corr), lower corrosion current density (Jcorr) and higher corrosion resistance compared to the SN63 alloy. Equivalent circuit curve fitting analysis of electrochemical impedance spectroscopy (EIS) results revealed the existence of two interfaces between the electrolyte and substrate. The surface layer and charge transfer resistance (Rct) of the SNC632 alloy was higher than that of the SN63 alloy. Immersion corrosion test results also confirmed the lower corrosion rate of the SNC632 alloy and substantiated the electrochemical corrosion results. Cu addition improved the corrosion resistance, which was mainly attributed to the absence of secondary Cu containing intermetallic phases in the SNC632 alloy and Cu presented as single phase.  相似文献   

8.
This research studied the mechanism of the corrosion resistance enhancement of artificially aged 7075 aluminium alloy using advanced Cs-corrected scanning transmission electron microscopy (STEM). The corrosion behaviors of artificially aged 7075 aluminium alloys in a 3.5 wt.% NaCl solution were investigated by impedance spectra, equivalent circuit analyses, polarization measurements and immersion tests. The results show that a longer aging treatment leads to better corrosion resistance, which can be attributed to the following microstructural features, as revealed by STEM. The Cu segregation at grain boundaries under over-aged conditions helps retard intergranular corrosion. The Mg(Zn, Cu)2 precipitates formed on the surfaces of Al18Mg3(Cr,Mn)2 dispersoids effectively insulate the dispersoids as cathodes in corrosion, from the Al matrix. This study demonstrates a potential strategy to design corrosion-resistant alloys achieved by proper alloying and subsequent aging.  相似文献   

9.
采用电弧喷涂方法在低碳钢表面获得高铝含量的Al-Zn-Si-RE涂层。通过测量Al-Zn-Si-RE涂层在3.5%NaCl溶液中的动电位极化曲线,腐蚀电位-时间曲线和电化学阻抗谱,系统地研究涂层的电化学腐蚀行为。通过将测量电化学阻抗谱拟合成等效电路图,研究涂层在3.5%NaCl溶液中浸泡不同时间的阻抗行为。结果表明:Al-Zn-Si-RE涂层与Zn-15Al涂层具有相似的极化行为,阳极极化曲线均无钝化特征,仅呈现出活性溶解,但其腐蚀性能优于Zn-15Al涂层。Al-Zn-Si-RE涂层可以给钢基体提供有效的牺牲阳极保护作用,且牺牲阳极保护作用在涂层腐蚀过程中占主导地位。此外,腐蚀电位-时间曲线和电化学阻抗谱结果表明:在浸泡过程中存在点蚀-溶解-再沉积、活化溶解、阴极保护、腐蚀产物引起的物理屏蔽和涂层失效五个腐蚀阶段。  相似文献   

10.
The intercrystalline corrosion, exfoliation corrosion (EXCO), and stress corrosion cracking (SCC) of Al–Zn–Mg–Sc–Zr alloy were investigated by means of constant temperature immersion corrosion method, optical microscopy, transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS). The results show that intercrystalline corrosion, and EXCO susceptibility of Al–Zn–Mg–Sc–Zr alloy decrease gradually with increasing of aging time. Corrosion susceptibility order from low to high is as follows: OA > PA > UA > NA. The SCC susceptibility index of PA temper is more than OA temper at the same strain rate. According to TEM observation, with aging time prolonging, a part of η′ phases transform to η equilibrium phases, which become coarse gradually. The distribution discontinuity of the grain boundary precipitates increases. In addition, for Al–Zn–Mg–Sc–Zr alloy without EXCO, the EIS is comprised by a capacitive impedance arc at high frequency and an inductive impedance arc at low frequency. Once EXCO occurs, the EIS is composed of two capacitive impedance arcs at high frequency and at low frequency, respectively.  相似文献   

11.
To explore the corrosion properties of magnesium alloys, the chemical behavior of a high strength Mg97Zn1Y2-1 wt.%Si C alloy in different corrosion environments was studied. Three solutions of 0.2 mol·L-1 NaCl, Na2SO4 and NaNO3 were selected as corrosion solutions. The microstructures, corrosion rate, corrosion potential, and mechanism were investigated qualitatively and quantitatively by optical microscopy(OM), scanning electron microscopy(SEM), immersion testing experiment, and electrochemical test. Microstructure observation shows that the Mg97 Zn1Y2-1 wt.%Si C alloy is composed of α-Mg matrix, LPSO(Mg12 ZnY) phase and Si C phase. The hydrogen evolution and electrochemical test results reflect that the Mg97Zn1Y2-1 wt.%SiC in 0.2 mol·L-1 Na Cl solution has the fastest corrosion rate, followed by Na2SO4 and NaNO3 solutions, and that the charge-transfer resistance presents the contrary trend and decreases in turn.  相似文献   

12.
目的研究TC2钛合金在模拟海水中的表面电化学及腐蚀行为,以及不同形变对其的影响。方法制备U形试样,进行模拟海水浸泡试验,采用电位测试、交流阻抗及极化曲线测试、扫描电镜(SEM)、X射线衍射(XRD)等方法进行分析。结果在240 d模拟海水中浸泡试验期间,无形变TC2钛合金表面钝化膜阻抗值随时间延长,先迅速增加,后缓慢增加,腐蚀电位持续升高,因此其表面电化学反应下降,腐蚀速率较低。45°形变TC2钛合金试样的表面钝化膜阻抗值先略微上升,后下降,最终低于初始阻抗值。90°形变试样的表面钝化膜阻抗值持续下降。经过240d浸泡后,无形变的试样表面出现微小的点蚀,45°形变试样表面点蚀密度增加,90°形变试样表面垂直压应力方向出现裂纹。XRD结果显示,形变处Ca~(2+)、Mg~(2+)等离子的吸附增加,这可能与表面粗糙度增大,TC2钛合金表面活性增加有关。结论在模拟海水环境中,无应变试样耐腐蚀性较强,应变导致TC2钛合金表面钝化膜破裂,点蚀增加,甚至出现裂纹,增加了TC2钛合金的应力腐蚀敏感性。  相似文献   

13.
采用慢应变速率拉伸试验,结合扫描电镜、能谱分析仪研究了第二相对7A52铝合金搅拌摩擦焊(FSW)焊缝应力腐蚀性能的影响.结果表明,FSW焊缝在3.5%NaCl溶液中,应力腐蚀开裂(SCC)均发生在后退侧的热影响区,断裂位置与显微硬度曲线中硬度最低区域相对应.焊缝的SCC敏感性在1×10-6s-1条件下最高,在1×10-5s-1条件下最低,不同第二相对FSW焊缝应力腐蚀裂纹形核和扩展的影响是不同的:Al9Fe0.84Mn2.16Si容易引发裂纹的萌生和扩展,Mg2Si被腐蚀留下的点蚀坑引发的裂纹相对较小.  相似文献   

14.
Plasma electrolytic oxidation (PEO) coatings in the aluminate-silicate-based mixture electrolyte solution with different duty cycles were successfully applied on Mg alloy. The corrosion behavior of the samples was evaluated by water contact angle test, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and immersion tests. Hydrophobic PEO coating could be obtained by adjusting the duty cycle of the applied electric signal. This coating considerably diminished the Mg dissolution and could enhance the impedance values of Mg alloy in 3.5 wt % NaCl solution. However, the surface of other PEO coated samples showed more hydrophilic properties compared to that of the uncoated sample. Dense structure of the modified PEO multiphase (including Mg2SiO4, MgO and MgAl2O4 phases) coating and also its appropriate thickness provided an effective barrier to remarkably delay corrosive solution penetration into the PEO coating. This phenomenon led to major decrease in anodic current density of alloy in chloride solution.  相似文献   

15.
The heat affected zone (HAZ) on the metal–inert gas (MIG) welding joint of 7N01 aluminium alloy was repaired by multipass narrow gap laser welding. The YX direction precracked three‐point bending sample was used in the alternate immersion test. The morphology of specimen surfaces demonstrated that the exfoliation corrosion in the HAZ after laser repair (HAZa) was more serious than that before laser repair (HAZb). The electrochemical impedance spectroscopy after different immersion corrosion time indicated that the HAZa and HAZb had similar corrosion potentials. However, the pitting corrosion resistance of HAZa was lower than that of HAZb at the beginning of exfoliation corrosion. The stress corrosion crack (SCC) of 7N01P‐T4 aluminium alloy displayed a multicrack source and an intergranular crack propagated along the rolling grain boundary under the test condition. An unusual method was taken to measure the length of SCC. The results showed that laser repairing did not weaken the stress corrosion resistance of the original joint.  相似文献   

16.
通过循环阳极极化曲线、电化学阻抗谱的测试以及浸泡腐蚀试验,研究了硅酸钠对5083铝合金在3.5%氯化钠溶液中的点蚀性能的影响。极化曲线结果表明,硅酸钠的加入使得5083铝合金在3.5%氯化钠溶液中的点蚀电位正移。通过EIS试验和浸泡腐蚀试验可进一步得出:体系中硅酸钠水解使得溶液中OH-浓度增加,铝合金表面钝化膜和Al2(SiO3)3沉淀膜增厚,从而较好地抑制了铝合金表面的点蚀,基体得到保护。  相似文献   

17.
Fe-30Mn-6Si, Fe-30Mn-6Si-5Cr and Fe-13Mn-5Si-12Cr-5Ni shape memory alloys were prepared by a VIM technique. The various corrosion tests were conducted to investigate the corrosion behaviors of these alloys. Experimental results show that in 3.5% NaCl solution, the Fe-13Mn-5Si-12Cr-5Ni alloy had the best chemical corrosion resistance, whereas the Fe-30Mn-6Si-5Cr alloy was locally attacked, forming many corrosion pits after immersion test. In addition, the detachment of the corrosion product covering the Fe-30Mn-6Si alloy caused an abrupt increase in the weight loss. After 2 h of heat treatment at 1000 °C, the corrosion potential of the Fe-30Mn-6Si alloy increased due to the formation of α-ferrite, while the Fe-30Mn-6Si-5Cr alloy became more active. In the stress-corrosion cracking test, the Fe-13Mn-5Si-12Cr-5Ni alloy, having the highest fracture stress in the atmosphere among these alloys, exhibited the largest decrease in fracture stress in the saturated H2S solution due to the existence of α-martensite.  相似文献   

18.
为提高AZ31B镁合金表面的耐腐蚀性能,用火焰喷涂方法在镁合金表面制备Al-Mg_2Si复合涂层。采用XRD、SEM和EDS分析涂层的物相组成、微观组织及元素分布;通过电化学试验测试样品在3.5%NaCl溶液中的腐蚀电位、腐蚀电流密度;通过3.5%NaCl溶液浸泡试验测试样品的腐蚀速率;并测试涂层的显微硬度。结果表明:涂层中的主要物相有Mg_2Si、Al,组织比较致密,元素分布均匀。Tafel极化曲线测试表明,Al-Mg_2Si涂层样品与AZ31B镁合金样品相比腐蚀电位从-1.489 V正移到-1.366 V,腐蚀电流密度从2.817×10~(-3) A/cm~2降低到1.198×10~(-3) A/cm~2。浸泡试验结果表明,喷涂Al-Mg_2Si的镁合金的腐蚀速率明显低于没有喷涂的镁合金。显微硬度测试表明,涂层的显微硬度集中分布在259~308 HV0.05之间,镁合金为50~60 HV0.05。因此在AZ31B镁合金表面火焰喷涂Al-Mg_2Si涂层可以提高其耐腐蚀性能,表面硬度显著提高。  相似文献   

19.
Aiming at the problem of poor corrosion resistance of aluminum alloy drill pipe materials in an alkaline environment, an innovative short basalt fiber/aluminum composite is prepared by vacuum hot-press sintering technique. Also, the corrosion behavior of the composites is investigated by hydrogen evolution and electrochemical tests. The results show that the corrosion resistance of 7075 aluminum alloy is significantly improved after adding 1.0 wt% short basalt fiber. According to the results of scanning electron microscopy and electrochemical impedance spectroscopy, the main component of basalt fiber, SiO2, reacts with the aluminum matrix to produce a large amount of Al2O3. Meanwhile, Si atoms diffuse into the metal melt. This reaction improves the strength and density of the oxide film of the composite material, thereby improving its corrosion resistance.  相似文献   

20.
利用TEM和SEM观察了690合金管中TiN夹杂物的存在形式及其分布状态,通过高温高压电化学实验和应力腐蚀浸泡实验研究了690合金管在高温高压水溶液中的腐蚀和应力腐蚀行为.TiN是690合金管中一种主要的夹杂物,随机分布在奥氏体基体中.模拟压水堆核电站一回路水化学条件的高温高压电化学实验及能谱测试表明,点蚀优先发生在690合金管中含Ti夹杂物处.高温高压含Pb碱溶液中的应力腐蚀浸泡实验显示,690合金管表面的TiN和基体结合处的基体侧是优先发生腐蚀的位置,分布在晶界上的TiN和基体结合处发生腐蚀后容易导致局部应力集中,从而诱发沿晶应力腐蚀开裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号