首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximate query processing using wavelets   总被引:7,自引:0,他引:7  
Approximate query processing has emerged as a cost-effective approach for dealing with the huge data volumes and stringent response-time requirements of today's decision support systems (DSS). Most work in this area, however, has so far been limited in its query processing scope, typically focusing on specific forms of aggregate queries. Furthermore, conventional approaches based on sampling or histograms appear to be inherently limited when it comes to approximating the results of complex queries over high-dimensional DSS data sets. In this paper, we propose the use of multi-dimensional wavelets as an effective tool for general-purpose approximate query processing in modern, high-dimensional applications. Our approach is based on building wavelet-coefficient synopses of the data and using these synopses to provide approximate answers to queries. We develop novel query processing algorithms that operate directly on the wavelet-coefficient synopses of relational tables, allowing us to process arbitrarily complex queries entirely in the wavelet-coefficient domain. This guarantees extremely fast response times since our approximate query execution engine can do the bulk of its processing over compact sets of wavelet coefficients, essentially postponing the expansion into relational tuples until the end-result of the query. We also propose a novel wavelet decomposition algorithm that can build these synopses in an I/O-efficient manner. Finally, we conduct an extensive experimental study with synthetic as well as real-life data sets to determine the effectiveness of our wavelet-based approach compared to sampling and histograms. Our results demonstrate that our techniques: (1) provide approximate answers of better quality than either sampling or histograms; (2) offer query execution-time speedups of more than two orders of magnitude; and (3) guarantee extremely fast synopsis construction times that scale linearly with the size of the data. Received: 7 August 2000 / Accepted: 1 April 2001 Published online: 7 June 2001  相似文献   

2.
We present BLAS, a Bi-LAbeling based XPath processing System. BLAS uses two labeling schemes to speed up query processing: P-labeling for processing consecutive child (or parent) axis traversals, and D-labeling for processing descendant (or ancestor) axis traversals. XML data are stored in labeled form and indexed. Algorithms are presented for translating XPath queries to SQL expressions. BLAS reduces the number of joins in the SQL query translated from a given XPath query and reduces the number of disk accesses required to execute the SQL query compared with the traditional XPath processing using D-labeling alone. We also propose an approximate P-labeling scheme and the corresponding query translation algorithm to handle XML data trees that contain a large number of distinct tag names, and/or are very deep. This extension captures a spectrum of XPath-to-SQL query translation schemes, ranging from existing schemes that do not use P-labels to the one that uses exact P-labels. Experimental results demonstrate the efficiency of the BLAS system.  相似文献   

3.
The CQL continuous query language: semantic foundations and query execution   总被引:2,自引:0,他引:2  
CQL, a continuous query language, is supported by the STREAM prototype data stream management system (DSMS) at Stanford. CQL is an expressive SQL-based declarative language for registering continuous queries against streams and stored relations. We begin by presenting an abstract semantics that relies only on “black-box” mappings among streams and relations. From these mappings we define a precise and general interpretation for continuous queries. CQL is an instantiation of our abstract semantics using SQL to map from relations to relations, window specifications derived from SQL-99 to map from streams to relations, and three new operators to map from relations to streams. Most of the CQL language is operational in the STREAM system. We present the structure of CQL's query execution plans as well as details of the most important components: operators, interoperator queues, synopses, and sharing of components among multiple operators and queries. Examples throughout the paper are drawn from the Linear Road benchmark recently proposed for DSMSs. We also curate a public repository of data stream applications that includes a wide variety of queries expressed in CQL. The relative ease of capturing these applications in CQL is one indicator that the language contains an appropriate set of constructs for data stream processing. Edited by M. Franklin  相似文献   

4.
A wireless sensor network (WSN) is composed of tens or hundreds of spatially distributed autonomous nodes, called sensors. Sensors are devices used to collect data from the environment related to the detection or measurement of physical phenomena. In fact, a WSN consists of groups of sensors where each group is responsible for providing information about one or more physical phenomena (e.g., group for collecting temperature data). Sensors are limited in power, computational capacity, and memory. Therefore, a query engine and query operators for processing queries in WSNs should be able to handle resource limitations such as memory and battery life. Adaptability has been explored as an alternative approach when dealing with these conditions. Adaptive query operators (algorithms) can adjust their behavior in response to specific events that take place during data processing. In this paper, we propose an adaptive in-network aggregation operator for query processing in sensor nodes of a WSN, called ADAGA (ADaptive AGgregation Algorithm for sensor networks). The ADAGA adapts its behavior according to memory and energy usage by dynamically adjusting data-collection and data-sending time intervals. ADAGA can correctly aggregate data in WSNs with packet replication. Moreover, ADAGA is able to predict non-performed detection values by analyzing collected values. Thus, ADAGA is able to produce results as close as possible to real results (obtained when no resource constraint is faced). The results obtained through experiments prove the efficiency of ADAGA.  相似文献   

5.
The problem of query optimization in object-oriented databases is addressed. We follow the Stack-Based Approach to query languages, which employs the naming-scoping-binding paradigm of programming languages rather than traditional database concepts such as relational/object algebras or calculi. The classical environment stack is a semantic basis for definitions of object query operators, such as selection, projection/navigation, dependent join, and quantifiers. We describe a general object data model and define a formalized OQL-like query language SBQL. Optimization by rewriting concerns queries containing so-called independent subqueries. It consists in detecting them and then factoring outside loops implied by query operators. The idea is based on the formal static analysis of scoping rules and binding names occurring in a query. It is more general than the classical pushing selections/projections before joins.  相似文献   

6.
In this paper, we propose an intelligent distributed query processing method considering the characteristics of a distributed ontology environment. We suggest more general models of the distributed ontology query and the semantic mapping among distributed ontologies compared with the previous works. Our approach rewrites a distributed ontology query into multiple distributed ontology queries using the semantic mapping, and we can obtain the integrated answer through the execution of these queries. Furthermore, we propose a distributed ontology query processing algorithm with several query optimization techniques: pruning rules to remove unnecessary queries, a cost model considering site load balancing and caching, and a heuristic strategy for scheduling plans to be executed at a local site. Finally, experimental results show that our optimization techniques are effective to reduce the response time.  相似文献   

7.
Graphs are widely used for modeling complicated data such as social networks, bibliographical networks and knowledge bases. The growing sizes of graph databases motivate the crucial need for developing powerful and scalable graph-based query engines. We propose a SPARQL-like language, G-SPARQL, for querying attributed graphs. The language enables the expression of different types of graph queries that are of large interest in the databases that are modeled as large graph such as pattern matching, reachability and shortest path queries. Each query can combine both structural predicates and value-based predicates (on the attributes of the graph nodes/edges). We describe an algebraic compilation mechanism for our proposed query language which is extended from the relational algebra and based on the basic construct of building SPARQL queries, the Triple Pattern. We describe an efficient hybrid Memory/Disk representation of large attributed graphs where only the topology of the graph is maintained in memory while the data of the graph are stored in a relational database. The execution engine of our proposed query language splits parts of the query plan to be pushed inside the relational database (using SQL) while the execution of other parts of the query plan is processed using memory-based algorithms, as necessary. Experimental results on real and synthetic datasets demonstrate the efficiency and the scalability of our approach and show that our approach outperforms native graph databases by several factors.  相似文献   

8.
The collective processing of multiple queries in a database system has recently received renewed attention due to its capability of improving the overall performance of a database system and its applicability to the design of knowledge-based expert systems and extensible database systems. A new multiple query processing strategy is presented which utilizes semantic knowledge on data integrity and information on predicate conditions of the access paths (plans) of queries. The processing of multiple queries is accomplished by the utilization of subset relationships between intermediate results of query executions, which are inferred employing both semantic and logical information. Given a set of fixed order access plans, the A* algorithm is used to find the set of reformulated access plans which is optimal for a given collection of semantic knowledge.  相似文献   

9.
刘德高  李晓宇 《计算机应用》2013,33(7):1964-1968
针对增量式监测算法(IMA)的冗余搜索问题,提出一种基于IMA改进的移动对象连续k近邻(Continuous k Nearest Neighbor, CkNN)查询处理新算法。采用增量式查询处理机制;利用距离相近的查询其查询结果大部分相同这一特性,在以查询点为中心进行网络扩展之前,首先执行一个预处理过程,分析相近的其他查询的扩展树,并重用其中的有效部分,从而避免了对道路网的盲目扩展;且在节点的网络扩展中,通过应用具有相同扩展方向的其他查询的扩展结果,不仅减少了对道路网的重复扩展,还节省了计算代价。实验结果表明,所提算法同传统算法相比较, 缩短了查询响应时间,提高了运行效率,并且适用于不同类型的k近邻查询。  相似文献   

10.
Online information repositories commonly provide keyword search facilities through textual query languages based on Boolean logic. However, there is evidence to suggest that the syntactic demands of such languages can lead to user errors and adversely affect the time that it takes users to form queries. Users also face difficulties because of the conflict in semantics between AND and OR when used in Boolean logic and English language. Analysis of usage logs for the New Zealand Digital Library (NZDL) show that few Boolean queries contain more than three terms, use of the intersection operator dominates and that query refinement is common. We suggest that graphical query languages, in particular Venn-like diagrams, can alleviate the problems that users experience when forming Boolean expressions with textual languages. A study of the utility of Venn diagrams for query specification indicates that with little or no training users can interpret and form Venn-like diagrams in a consistent manner which accurately correspond to Boolean expressions. We describe VQuery, a Venn-diagram based user interface to the New Zealand Digital Library (NZDL). In a study which compared VQuery with a standard textual Boolean interface, users took significantly longer to form queries and produced more erroneous queries when using VQuery. We discuss the implications of these results and suggest directions for future work. Received: 15 December 1997 / Revised: June 1999  相似文献   

11.
We address efficient processing of SPARQL queries over RDF datasets. The proposed techniques, incorporated into the gStore system, handle, in a uniform and scalable manner, SPARQL queries with wildcards and aggregate operators over dynamic RDF datasets. Our approach is graph based. We store RDF data as a large graph and also represent a SPARQL query as a query graph. Thus, the query answering problem is converted into a subgraph matching problem. To achieve efficient and scalable query processing, we develop an index, together with effective pruning rules and efficient search algorithms. We propose techniques that use this infrastructure to answer aggregation queries. We also propose an effective maintenance algorithm to handle online updates over RDF repositories. Extensive experiments confirm the efficiency and effectiveness of our solutions.  相似文献   

12.
13.
Dissemination of XML data on the internet could breach the privacy of data providers unless access to the disseminated XML data is carefully controlled. Recently, the methods using encryption have been proposed for such access control. However, in these methods, the performance of processing queries has not been addressed. A query processor cannot identify the contents of encrypted XML data unless the data are decrypted. This limitation incurs overhead of decrypting the parts of the XML data that would not contribute to the query result. In this paper, we propose the notion of Query-Aware Decryption for efficient processing of queries against encrypted XML data. Query-Aware Decryption allows us to decrypt only those parts that would contribute to the query result. For this purpose, we disseminate an encrypted XML index along with the encrypted XML data. This index, when decrypted, informs us where the query results are located in the encrypted XML data, thus preventing unnecessary decryption for other parts of the data. Since the size of this index is much smaller than that of the encrypted XML data, the cost of decrypting this index is negligible compared with that for unnecessary decryption of the data itself. The experimental results show that our method improves the performance of query processing by up to six times compared with those of existing methods. Finally, we formally prove that dissemination of the encrypted XML index does not compromise security.  相似文献   

14.
Heterogeneities exist in a multidatabase environment. For example, a real world entity may be differently represented in relations of different databases. In particular, keys of these relations may be incompatible. In this paper, we consider processing entity join queries when data transmission cost dominates. An entity join operation ‘integrates’ tuples representing the same entities from different relations in which inconsistent data may exist. A natural way to process the entity join is to transmit both relations to a site, resolve the possible conflicts between corresponding attributes and process the join, which is very costly. In this paper, an approach is proposed to correctly transform a global query into local subqueries to preprocess entity join queries in multiple sites with an attempt to lower the cost of data transmission. Besides, an extension of the traditional semijoin, named extended semijoin, is proposed to further reduce the cost of data transmission for entity join query processing.  相似文献   

15.
A number of indexing techniques have been proposed in recent times for optimizing the queries on XML and other semi-structured data models. Most of the semi-structured models use tree-like structures and query languages (XPath, XQuery, etc.) which make use of regular path expressions to optimize the query processing. In this paper, we propose two algorithms called Entry-point algorithm (EPA) and Two-point Entry algorithms that exploit different types of indices to efficiently process XPath queries. We discuss and compare two approaches namely, Root-first and Bottom-first in implementing the EPA. We present the experimental results of the algorithms using XML benchmark queries and data and compare the results with that of traditional methods of query processing with and without the use of indexes, and ToXin indexing approach. Our algorithms show improved performance results than the traditional methods and Toxin indexing approach.  相似文献   

16.
K.  Wen-Syan  M.   《Data & Knowledge Engineering》2000,35(3):259-298
Since media-based evaluation yields similarity values, results to a multimedia database query, Q(Y1,…,Yn), is defined as an ordered list SQ of n-tuples of the form X1,…,Xn. The query Q itself is composed of a set of fuzzy and crisp predicates, constants, variables, and conjunction, disjunction, and negation operators. Since many multimedia applications require partial matches, SQ includes results which do not satisfy all predicates. Due to the ranking and partial match requirements, traditional query processing techniques do not apply to multimedia databases. In this paper, we first focus on the problem of “given a multimedia query which consists of multiple fuzzy and crisp predicates, providing the user with a meaningful final ranking”. More specifically, we study the problem of merging similarity values in queries with multiple fuzzy predicates. We describe the essential multimedia retrieval semantics, compare these with the known approaches, and propose a semantics which captures the requirements of multimedia retrieval problem. We then build on these results in answering the related problem of “given a multimedia query which consists of multiple fuzzy and crisp predicates, finding an efficient way to process the query.” We develop an algorithm to efficiently process queries with unordered fuzzy predicates (sub-queries). Although this algorithm can work with different fuzzy semantics, it benefits from the statistical properties of the semantics proposed in this paper. We also present experimental results for evaluating the proposed algorithm in terms of quality of results and search space reduction.  相似文献   

17.
Data warehouse workloads are crucial for the support of on-line analytical processing (OLAP). The strategy to cope with OLAP queries on such huge amounts of data calls for the use of large parallel computers. The trend today is to use cluster architectures that show a reasonable balance between cost and performance. In such cases, it is necessary to tune the applications in order to minimize the amount of I/O and communication, such that the global execution time is reduced as much as possible.

In this paper, we model and analyze the most up-to-date strategies for ad hoc star join query processing in a cluster of computers. We show that, for ad hoc query processing and assuming a limited amount of resources available, these strategies still have room for improvement both in terms of I/O and inter-node data traffic communication. Our analysis concludes with the proposal of a hybrid solution that improves these two aspects compared to the previous techniques, and shows near optimal results in a broad spectrum of cases.  相似文献   


18.
The use of Voronoi diagram has traditionally been applied to computational geometry and multimedia problems. In this paper, we will show how Voronoi diagram can be applied to spatial query processing, and in particular to Reverse Nearest Neighbor (RNN) queries. Spatial and geographical query processing, in general, and RNN in particular, are becoming more important, as online maps are now widely available. In this paper, using the concept of Voronoi diagram, we classify RNN into four types depending on whether the query point and the interest objects are the generator points of the Voronoi Polygon or not. Our approach is based on manipulating Network Voronoi Diagram properties and applying a progressive incremental network expansion for finding the polygon inner network distances required to solve RNN queries. Our experimentation results show that our approaches have good response times in answering RNN queries.  相似文献   

19.
Given a set D of trajectories, a query object q, and a query time extent Γ, a mutual (i.e., symmetric) nearest neighbor (MNN) query over trajectories finds from D, the set of trajectories that are among the k1 nearest neighbors (NNs) of q within Γ, and meanwhile, have q as one of their k2 NNs. This type of queries is useful in many applications such as decision making, data mining, and pattern recognition, as it considers both the proximity of the trajectories to q and the proximity of q to the trajectories. In this paper, we first formalize MNN search and identify its characteristics, and then develop several algorithms for processing MNN queries efficiently. In particular, we investigate two classes of MNN queries, i.e., MNNP and MNNT queries, which are defined with respect to stationary query points and moving query trajectories, respectively. Our methods utilize the batch processing and reusing technology to reduce the I/O cost (i.e., number of node/page accesses) and CPU time significantly. In addition, we extend our techniques to tackle historical continuous MNN (HCMNN) search for moving object trajectories, which returns the mutual nearest neighbors of q (for a specified k1 and k2) at any time instance of Γ. Extensive experiments with real and synthetic datasets demonstrate the performance of our proposed algorithms in terms of efficiency and scalability.  相似文献   

20.
XML is an ordered data model and XQuery expressions return results that have a well-defined order. However, little work on how order is supported in XML query processing has been done to date. In this paper we study the issues related to handling order in the XML context, namely challenges imposed by the XML data model, the variety of order requirements of the XQuery language, and the need to maintain order in the presence of updates to the XML data. We propose an efficient solution that addresses all these issues. Our solution is based on a key encoding for XML nodes that serves as node identity and at the same time encodes order. We design rules for encoding order of processed XML nodes based on the XML algebraic query execution model and the node key encoding. These rules do not require any actual sorting for intermediate results during execution. Our approach enables efficient order-sensitive incremental view maintenance as it makes most XML algebra operators distributive with respect to bag union. We prove the correctness of our order encoding approach. Our approach is implemented and integrated with Rainbow, an XML data management system developed at WPI. We have tested the efficiency of our approach using queries that have different order requirements. We have also measured the relative cost of different components related to our order solution in different types of queries. In general the overhead of maintaining order in our approach is very small relative to the query processing time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号