首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
超材料由于具有吸波特性而引起了人们的极大兴趣.简要介绍了超材料产生吸波的原理,并着重阐述了吸波超材料在微波段、光波段以及太赫兹波段的极化特性和相应超材料吸波器结构的模拟及实验研究进展.这种超材料的吸波特性在军事和民用上具有潜在的应用价值.  相似文献   

2.
吸波材料的出现极大改善了电磁环境,提升了武器装备的作战效能,但随着P波段探测技术的迅猛发展,研究具有"薄、宽、轻、强"特性的P波段吸波材料有着非常重要的意义。针对目前吸波材料存在的低频瓶颈,对传统吸波材料和超材料吸波体,从影响P波段吸收性能的因素及研究现状两方面进行了综述,并对未来P波段吸波材料的发展方向进行了总结与展望。  相似文献   

3.
基于亚波长单元结构的人工电磁超材料具有优异的电磁/光学特性,如负折射率、超分辨率以及极化转化等,使得超材料研究成为近年量子通信、纳米光学、材料科学、能源探测等领域的前沿研究方向,其中以手性超材料的研究尤为突出。手性超材料是指与其镜像不具有几何对称性,且不可通过旋转或平移等任意操作使其与镜像重合的一种新型电磁超材料。超材料的深入研究,极大地丰富了手性结构的建模,为许多隐晦物理现象和理论分析的研究提供了更多有效的方法。手性超材料所具备的超强光学活性、圆二色性以及不对称传输等独特的电磁/光学特性,也为电磁学、物理学、材料科学、光学、声学、纳米科学以及信息科学等领域提供了全新的研究方向。手性是手性分子的一种固有特征,也是生命体征的一种表现,在有机世界中普遍存在,诸如蛋白质、DNA、糖分子、病毒、氨基酸和液晶体等分子。然而在自然界中,手性结构十分有限,有关建模和理论分析仅停留在原始结构的表征。目前,手性超材料的研究正逐步从微波段扩展至太赫兹、红外波段,甚至光波段。基于手性微结构的电磁超材料的实现很大程度上取决于单元结构尺寸和周期阵列排布,因此吸收带宽仍然局限于较窄的频率范围,且对左旋圆极化波(LCP)和右旋圆极化波(RCP)的识别(选择性吸收)能力较弱。随着对手性超材料的进一步研究,微波频段的差异化吸收率逐步提高到90%以上,但在高频段差异化的吸收率仍然较低。此外,随着微纳技术和纳米技术的发展,利用包括半导体材料、相变材料、高电阻/电感/电容薄膜、石墨烯在内的新型功能材料,以及结合集总元件的匹配电路控制,为实现红外、可见光波段的吸波器提供了研究空间。本文介绍了手性超材料对圆极化波的吸收原理,着重阐述了内在手性结构、外在手性结构以及与包括半导体材料、石墨烯等其他新型功能材料相结合的手性超材料吸收光谱的研究进展。这种基于人工电磁微结构的手性吸波特性可应用于极化转化器、电磁能量收集器、红外成像等电磁/光学器件设计中。  相似文献   

4.
超表面(Metasurfaces,MMs)是拥有亚波长尺寸谐振单元结构的人工平面材料,其电磁特性主要由结构决定。超表面具有极强的波前控制能力。本文着重介绍了近年来纳米结构超表面在红外波段的光传输特性,包括光波偏振控制、旋光性、不对称传输等方面的理论和实验研究进展,简要介绍了制备纳米结构超表面的工艺技术。  相似文献   

5.
《现代材料动态》2006,(2):21-21
中国科学院化学所有机固体实验室功能界面材料小组在实现了具有“光”、“热”响应的“超疏水/超亲水”智能“开关”表面后,又以氧化钛为原料,研制出具有工业应用前景的“光开关”材料。  相似文献   

6.
提出一种基于光敏半导体的多功能超表面,该超表面具有双峰吸收、宽频和双频极化转换3种模式.在没有泵浦光照射时,超表面工作在双峰吸收模式,在2.25 THz和2.75 THz两个峰处的吸收率分别为95.1%和94.4%;当超表面处于1550 nm泵浦光照射条件下,可工作在宽频极化转换模式,在1.32 THz~2.15 THz频段的极化转换率达到90%以上,相对带宽为47.8%;当超表面处于800 nm泵浦光照射条件下,超表面工作于双频极化转换模式,在1.09 THz~1.23 THz和2.12 THz~2.23 THz两个频段的极化转换率均超过90%.此外,通过分析磁场和表面电流分布,解释了不同工作模式的物理机制.本文所提出的超表面有望应用于未来的多功能太赫兹设备.  相似文献   

7.
据有关媒体报导,中国科学院化学所有机固体实验室功能界面材料小组在实现了具有“光”、“热”响应的“超疏水/超亲水”智能“开关”表面后,最近又以氧化钛为原料,研制出具有工业应用前景的“光开关”材料。  相似文献   

8.
朱邱豪  王金金  董建峰 《材料导报》2021,35(7):7063-7070
自超表面(超薄亚波长厚度超材料)被提出之后,其基础材料经历了从金属、混合介质再到全介质材料的更迭.传统超表面功能单一,在实际应用中存在局限性,因此,研究者们把目标放在了动态可调谐的超表面上.本文介绍了具有高效光传输特性的混合介质和全介质的可调谐超表面的一些理论基础,并对近期的研究进展进行了综述,全介质型可调谐超表面又分为材料调谐和物理调谐两部分.在红外和太赫兹波段,主要介绍了锗-锑-碲化合物(Ge2 Sb2 Te5,GST)、VO2、石墨烯、液晶、砷化镓等一些常用材料的可调谐超表面的研究进展,最后,给出了对可调谐超表面未来发展的一些个人看法.  相似文献   

9.
超材料(metamaterials)因为能够在亚波长尺度范围内精细调控电磁波而受到人们广泛关注。超材料具有丰富的电磁模态,在表面支持高度局域场增强且对周围介电环境极其敏感,可应用于无标记光学生物传感领域。与传统光学生物传感器相比,超材料生物传感器具有小型化、集成化、高度灵敏、多功能可定制等突出优点。本文总结了近年来超材料生物传感器在可见光、近红外、中红外以及太赫兹波段的研究进展,包括折射率生物传感、表面增强拉曼散射、表面增强红外吸收和太赫兹生物传感等。  相似文献   

10.
可调谐超材料吸波体的数值仿真研究   总被引:1,自引:0,他引:1  
刘凌云  胡长寿  付波  卓露 《功能材料》2011,42(2):287-290
设计了一个由周期排列的金属电谐振环(the electric ring resonator,ERR)与短导线(FR-4基板上)组合而成的超材料吸波体.在某一频段,该超材料吸波体能同时产生强的电谐振与磁谐振.采用数值仿真方法,在8-12GHz波段计算了该超材料的S参数,并分析了其吸收率变化规律.单层超材料吸波体在9.27...  相似文献   

11.
Metasurfaces, 2D artificial arrays of subwavelength elements, have attracted great interest from the optical scientific community in recent years because they provide versatile possibilities for the manipulation of optical waves and promise an effective way for miniaturization and integration of optical devices. In the past decade, the main efforts were focused on the realization of single‐dimensional (amplitude, frequency, polarization, or phase) manipulation of optical waves. Compared to the metasurfaces with single‐dimensional manipulation, metasurfaces with multidimensional manipulation of optical waves show significant advantages in many practical application areas, such as optical holograms, sub‐diffraction imaging, and the design of integrated multifunctional optical devices. Nowadays, with the rapid development of nanofabrication techniques, the research of metasurfaces has been inevitably developed from single‐dimensional manipulation toward multidimensional manipulation of optical waves, which greatly boosts the application of metasurfaces and further paves the way for arbitrary design of optical devices. Herein, the recent advances in metasurfaces are briefly reviewed and classified from the viewpoint of different dimensional manipulations of optical waves. Single‐dimensional manipulation and 2D manipulation of optical waves with metasurfaces are discussed systematically. In conclusion, an outlook and perspectives on the challenges and future prospects in these rapidly growing research areas are provided.  相似文献   

12.
Photonic metasurfaces, a kind of 2D structured medium, represent a novel platform to manipulate the propagation of light at subwavelength scale. In linear optical regime, many interesting topics such as planar meta‐lenses, metasurface optical holography, and so on have been widely investigated. Recently, metasurfaces have gone into the nonlinear optical regime. While it is recognized that the local symmetry of the meta‐atoms plays a vital role in determining the polarization, phase, and intensity of the nonlinear waves, much less attention has been paid to the global symmetry of the nonlinear metasurfaces. According to the Penrose tiling and the newly proposed hexagonal quasicrystalline tiling, nonlinear optical quasicrystal metasurfaces are designed and fabricated based on the geometric‐phase‐controlled plasmonic meta‐atoms with local rotational symmetry. It is found that the far‐field radiation behavior of second harmonic generation waves are determined by both the tiling schemes of quasicrystal metasurfaces and the local symmetry of meta‐atoms they consist of. The proposed concept may open new avenues for designing nonlinear optical sources with metasurface crystals.  相似文献   

13.
New methods for achieving high-quality conducting oxide metasurfaces are of great importance for a range of emerging applications from infrared thermal control coatings to epsilon-near-zero nonlinear optics. This work demonstrates the viability of plasma patterning as a technique to selectively and locally modulate the carrier density in planar Al-doped ZnO (AZO) metasurfaces without any associated topographical surface profile. This technique stands in strong contrast to conventional physical patterning which results in nonplanar textured surfaces. The approach can open up a new route to form novel photonic devices with planar metasurfaces, for example, antireflective coatings and multi-layer devices. To demonstrate the performance of the carrier-modulated AZO metasurfaces, two types of devices are realized using the demonstrated plasma patterning. A metasurface optical solar reflector is shown to produce infrared emissivity equivalent to a conventional etched design. Second, a multiband metasurface is achieved by integrating a Au visible-range metasurface on top of the planar AZO infrared metasurface. Independent control of spectral bands without significant cross-talk between infrared and visible functionalities is achieved. Local carrier tuning of conducting oxide films offers a conceptually new approach for oxide-based photonics and nanoelectronics and opens up new routes for integrated planar metasurfaces in optical technology.  相似文献   

14.
Image steganography based on intelligent devices is one of the effective routes for safely and quickly transferring secret information. However, optical image steganography has attracted far less attention than digital one due to the state-of-the-art technology limitations of high-resolution optical imaging in integrated devices. Optical metasurfaces, composed of ultrathin subwavelength meta-atoms, are extensively considered for flat optical-imaging nano-components with high-resolutions as competitive candidates for next-generation miniaturized devices. Here, multiplex imaging metasurfaces composed of single nanorods are proposed under a detailed strategy to realize optical image steganography. The simulation and experimental results demonstrate that an optical steganographic metasurface can simultaneously transfer independent secret image information to two receivers with special keys, without raising suspicions for the general public under the cloak of a cover image. The proposed optical steganographic strategy by metasurfaces can arbitrarily distribute a continuous grayscale image together with a black-and-white image in separate channels, implying the distinguishing feature of high-density information capacity for integration and miniaturization in optical meta-devices.  相似文献   

15.
Vector beam has recently attracted many attentions due to novel properties and wide applications. Finding a method efficiently generating high quality vector beam is very important when it is used in practice. In this paper, we theoretically and experimentally demonstrate the generation of vector beams based on dielectric metasurfaces, which are fabricated by femtosecond laser writing in silica glass. Three types of linearly polarized vector beams are produced by three specially designed metasurfaces. The vector beam generator is convenient and robust due to its simple optical path. We believe that metasurfaces will be widely applied in manipulating polarization, phase, and amplitude of light as the development of fabrication technology.  相似文献   

16.
Metasurfaces are planar photonic elements composed of subwavelength nanostructures, which can deeply interact with light and exploit new degrees of freedom (DOF) to manipulate optical fields. In the past decade, metasurfaces have drawn great interest from the scientific community due to their profound potential to arbitrarily control light. Here, recent developments of multiplexing and multifunctional metasurfaces, which enable concurrent tasks through a dramatic compact design, are reviewed. The fundamental properties, design strategies, and applications of multiplexing and multifunctional metasurfaces are then discussed. First, recent progress on angular momentum multiplexing, including its behavior under different incident conditions, is considered. Second, a detailed overview of polarization-controlled, wavelength-selective, angle-selective, and reconfigurable multiplexing/multifunctional metasurfaces is provided. Then, the integrated and on-chip design of multifunctional metasurfaces is addressed. Finally, future directions and potential applications are presented.  相似文献   

17.
Optical metasurfaces, as an emerging platform, have been shown to be capable of effectively manipulating the local properties (amplitude, phase, and polarization) of the reflected or transmitted light and have unique strengths in high‐density optical storage, holography, display, etc. The reliability and flexibility of wavefront manipulation makes optical metasurfaces suitable for information encryption by increasing the possibility of encoding combinations of independent channels and the capacity of encryption, and thus the security level. Here, recent progress in metasurface‐based information encoding is reviewed, in which the independent channels for information encoding are built with wavelength and/or polarization in one‐dimensional/two‐dimensional (1D/2D) modes. The way to increase information encoding capacity and security level is proposed, and the opportunities and challenges of information encoding with independent channels based on metasurfaces are discussed.  相似文献   

18.
Metasurfaces are artificially engineered ultrathin structures that can finely tailor and control electromagnetic wavefronts. There is currently a strong interest in exploring their capability to lift some fundamental limitations dictated by Lorentz reciprocity, which have strong implications in communication, heat management, and energy harvesting. Time‐varying approaches have emerged as attractive alternatives to conventional schemes relying on magnetic or nonlinear materials, but experimental evidence is currently limited to devices such as circulators and antennas. Here, the recently proposed concept of space‐time‐coding digital metasurfaces is leveraged to break reciprocity. Moreover, it is shown that such nonreciprocal effects can be controlled dynamically. This approach relies on inducing suitable spatiotemporal phase gradients in a programmable way via digital modulation of the metasurface‐elements' phase repsonse, which enable anomalous reflections accompanied by frequency conversions. A prototype operating at microwave frequencies is designed and fabricated for proof‐of‐concept validation. Measured results are in good agreement with theory, hence providing the first experimental evidence of nonreciprocal reflection effects enabled by space‐time‐modulated digital metasurfaces. The proposed concept and platform set the stage for “on‐demand” realization of nonreciprocal effects, in programmable or reconfigurable fashions, which may find several promising applications, including frequency conversion, Doppler frequency illusion, optical isolation, and unidirectional transmission.  相似文献   

19.
Compact integrated multifunctional metasurface that can deal with concurrent tasks represent one of the most profound research fields in modern optics. Such integration is expected to have a striking impact on minimized optical systems in applications such as optical communication and computation. However, arbitrary multifunctional spin‐selective design with precise energy configuration in each channel is still a challenge, and suffers from intrinsic noise and complex designs. Here, a design principle is proposed to realize energy tailorable multifunctional metasurfaces, in which the functionalities can be arbitrarily designed if the channels have no or weak interference in k‐space. A design strategy is demostrated here with high‐efficiency dielectric nanopillars that can modulate full Fourier components of the optical field. The spin‐selective behavior of the dielectric metasurfaces is also investigated, which originates from the group effect introduced by numerous nanopillar arrays. This approach provides straightforward rules to control the functionality channels in the integrated metasurfaces, and paves the way for efficient concurrent optical communication.  相似文献   

20.
Controlling light with light is essential for all-optical switching, data processing in optical communications and computing. Until now, all-optical control of light has relied almost exclusively on nonlinear optical interactions in materials. Achieving giant nonlinearities under low light intensity is essential for weak-light nonlinear optics. In the past decades, such weak-light nonlinear phenomena have been demonstrated in photorefractive and photochromic materials. However, their bulky size and slow speed have hindered practical applications. Metasurfaces, which enhance light–matter interactions at the nanoscale, provide a new framework with tailorable nonlinearities for weak-light nonlinear dynamics. Current advances in nonlinear metasurfaces are introduced, with a special emphasis on all-optical light controls. The tuning of the nonlinearity values using metasurfaces, including enhancement and sign reversal is presented. The tailoring of the transient behaviors of nonlinearities in metasurfaces to achieve femtosecond switching speed is also discussed. Furthermore, the impact of quantum effects from the metasurface on the nonlinearities is introduced. Finally, an outlook on the future development of this energetic field is offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号